В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
arefevaz1995
arefevaz1995
04.09.2020 21:30 •  Алгебра

1) Представить в виде многочлена a) (0,4х + 5)2 + (х – 2)2 =
b) (m3 – 3)(m3 + 3)(m6 + 9) + 81 =

Показать ответ
Ответ:
obshaga2311
obshaga2311
07.02.2021 20:14

Поскольку, любое уравнение можно поделить на его старший коэффициент, то будем считать, для удобства, что мы рассматриваем два приведенных кубических уравнения с рациональными коэффициентами.

x^3+ax^2+bx+c = 0\\x^3+mx^2+nx+k=0, a,b,c,m,n,k - рациональные числа.

Поскольку, данные уравнения имеют общий корень, то уравнение, являющееся их разностью, тоже содержит этот корень:

(m-a)x^2+(n-b)x+(k-c) = 0 , поскольку коэффициенты уравнений непропорциональны, то все коэффициенты полученного квадратного уравнения ненулевые.

А значит, данный общий иррациональный корень принимает вид : p+-\sqrt{q} , где p,q - рациональные числа, при этом q0 не полный квадрат, отсюда в частности q\neq 0.

Попробуем показать, что если  p+\sqrt{q} корень уравнения

x^3+ax^2+bx+c = 0 , то и p-\sqrt{q} корень данного уравнения , и наоборот. Сделаем некоторое упрощение.

Если число  p+-\sqrt{q}  является корнем данного уравнения , то сделаем замену:  x-p=t , тогда после раскрытия скобок данное уравнение так же будет с рациональными коэффициентами и будет иметь корень  t=+-\sqrt{q}  

Такое уравнение примет вид :

f(t)=t^3+ut^2+vt+g=0 , u,v,g - рациональные числа.

Учитывая, что f(\sqrt{q} ) = 0

q\sqrt{q} +uq+v\sqrt{q} +g=0\\\sqrt{q} (q+v) = -g-uq

Предположим, что q+v\neq 0 , но тогда , учитывая, что q - не полный квадрат, то левая часть равенства иррациональна, а правая  рациональна, что невозможно. То есть мы пришли к противоречию, а значит : q+v=g+uq=0

Таким образом:

f(-\sqrt{q} ) =-q\sqrt{q} +uq -v\sqrt{q}+g = g+uq -\sqrt{q}(q+v) = 0

Аналогично, доказывается, что если -\sqrt[]{q} корень данного уравнения, то и \sqrt{q} корень этого уравнения.

Таким образом, мы доказали, что если  p+\sqrt{q} корень уравнения

x^3+ax^2+bx+c = 0 , то и p-\sqrt{q} корень данного уравнения и наоборот.  Аналогично доказывается этот факт и для уравнения:

x^3+mx^2+nx+k=0 .

А значит, данные кубические многочлены имеют еще один общий иррациональный корень.

Что и требовалось доказать.

0,0(0 оценок)
Ответ:
аореакенгшлгн
аореакенгшлгн
07.02.2021 20:14

1)

ОДЗ:   x^2-x-6\geq0   ⇒      (x+2)(x-3)\geq 0   ⇒  x \in (-\infty; -2] \cup [3;+\infty)

(2^{x}-2)\cdot \sqrt{x^2-x-6} \geq 0      ⇔

(2^{x}-2)\cdot \sqrt{x^2-x-6} =0    или   (2^{x}-2)\cdot \sqrt{x^2-x-6} 0

(2^{x}-2)\cdot \sqrt{x^2-x-6} =0      ⇒     2^{x}-2=0   или   \sqrt{x^2-x-6} =0   ⇒

x=1   или    x=-2     или    x=3

x=1       не входит в ОДЗ

два корня    x=-2     или    x=3

(2^{x}-2)\cdot \sqrt{x^2-x-6} 0     при    x \in (-\infty; -2] \cup [3;+\infty)

\sqrt{x^2-x-6} 0,   тогда     2^{x}-20  ⇒     2^{x}2   ⇒     x 1

C учетом x \in (-\infty; -2] \cup [3;+\infty)  получаем ответ:  

\{-2\} \cup [3;+\infty)

2)

ОДЗ:   x^2-2x-8\geq0   ⇒      (x+2)(x-4)\geq 0   ⇒  x \in (-\infty; -2] \cup [4;+\infty)

(3^{x-2}-1)\cdot \sqrt{x^2-2x-8} \leq 0      ⇔

(3^{x-2}-1)\cdot \sqrt{x^2-2x-8} =0    или   (3^{x-2}-1)\cdot \sqrt{x^2-2x-6}

(3^{x-2}-1)\cdot \sqrt{x^2-2x-8} =0      ⇒     3^{x-2}-1=0   или   \sqrt{x^2-2x-8} =0   ⇒

x=2   или    x=-2     или    x=4

x=2       не входит в ОДЗ

два корня    x=-2     или    x=4

(3^{x-2}-1)\cdot \sqrt{x^2-2x-8}     при    x \in (-\infty; -2] \cup [4;+\infty)

\sqrt{x^2-2x-8} 0,   тогда     3^{x-2}-1  ⇒     3^{x-2}   ⇒     x-2

C учетом      x \in (-\infty; -2] \cup [4;+\infty)  получаем ответ:  

(-\infty;-2]\cup \{2\}

3)

\sqrt{6\cdot 3^{x}-2} 3^{x}+1

Так как     3^{x}+1 0         при любых х, возводим данное неравенство в квадрат:

6\cdot 3^{x}-2(3^{x})^2+2\cdot 3^{x}+1

(3^{x})^2-4\cdot 3^{x}+3

D=16-12=4

(3^{x}-1)(3^{x}-3)

1< 3^{x}

Показательная функция с основанием 3 возрастает

0 < x < 1

О т в е т. (0;1)

4)

\sqrt{2\cdot 5^{x+1}-1} 5^{x}+2

Так как     5^{x}+2 0         при любых х, возводим данное неравенство в квадрат:

2\cdot 5^{x+1}-1(5^{x})^2+4\cdot 5^{x}+4

5^{x+1}=5\cdot 5^{x}

(5^{x})^2-6\cdot 5^{x}+5

D=36-20=16

(5^{x}-1)(5^{x}-5)

1< 5^{x}

Показательная функция с основанием 5 возрастает

0 < x < 1

О т в е т. (0;1)

         

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота