1. Преобразуйте эти числа из десятичной в двоичную систему счисления: 15, 20, 48, 77, 2. 125 Преобразуйте эти числа из десятичной в десятичную систему счисления 37, 121, 84 3. : Преобразуйте эти числа из десятичной в шестнадцатеричную систему счисления: 125, 67, 91 восьмеричная
Объяснение:
вынесем за скобки общие множители
x²-5x+6+[√(a(x-2))](x=3)-6a(x-3)=0 (1)
x²-5x+6 разложим на множители
х₁=-2;x=3 нашел подбором с использованием теоремы Виета
1. при а=0 выражение (1) принимает вид x²-5x+6=0 и имеет два решения
по формуле ax²+bx+c=a(x-x₁)(x-x₂)
x²-5x+6=(x+2)(x-3) подставим в (1)
(x+2)(x-3)+[√(a(x-2))](x=3)-6a(x-3)=0 вынесем за скобки общий множитель
(x-3)(x+2)+[√(a(x-2))]-6a)=0 это выражение имеет решение х=3
очевидно что, чтобы выражение (1) имело единственное решение выражение x+2+[√(a(x-2))]-6a=0 (2) не должно иметь решений
преобразуем выражение (2)
√(a(x-2))=-х+(6a-2) решим это уравнение графическим
у=√(a(x-2))
у=-х+(6a-2)
чтобы уравнение (2) не имело решений надо найти такое а при котором графики указанных выше функций не пересекались
выясним взаимное расположение графиков в зависимости от параметра а
2. При а>0
графиком у=√(a(x-2)) является кривая линия получающаяся из линии у=√х переноса вдоль оси ОХ на 2 единицы вправо и сжатием - растяжением вдоль оси ОХ в зависимости от значения а
крайняя левая по оси ОХ точка кривой (2;0) , ветка кривой направлена вправо .
так как a>0 (6a-2)>-2
2.1. при (6a-2)=2 прямая у=-х+(6a-2) имеет вид у=-х+2 и проходит через точку (2;0) и графики пересекаются в этой точке, при этом (2) имеет одно решение
2.2 при 6a-2>2 прямая у=-х+(6a-2) находится выше прямой у=-х+2 и и графики пересекаются в двух точках при этом (2) имеет 2 решения
2.3 при 6a-2<2 прямая у=-х+(6a-2) находится ниже прямой у=-х+2 и и графики не пересекаются (2) не имеет решений
при этом
6a-2<2 ; 6a<4; a<4/6; a<2/3 с учетом того что мы рассматриваем a>0
0<a<2/3
3. При а<0
графиком у=√(a(x-2)) является кривая линия получающаяся из линии у=√х переноса вдоль оси ОХ на 2 единицы вправо и сжатием - растяжением вдоль оси ОХ в зависимости от значения а
крайняя правая относительно оси ОХ точка кривой (2;0) , ветка кривой направлена влево .
так как a<0 то (6a-2)<-2
так как (6a-2)<-2
прямая у=-х+(6a-2) в этом случае находится ниже прямой у=-х-2
которая имеет с графиком кривой общую точку и тоже имеет с графиком кривой общую точку
в этом случае (2) имеет решение
таким образом, уравнение 1 имеет единственное решение
при 0<a<2/3
1
1) y+y+y=3y=y*3≠y^3
2)8m=6m+2m
3)a+4b=4b+a
4)5(x-2)=5x-10≠5x-7.
2
1) 7*7*7=7^3
2)(-5)*(-5)*(-5)*(-5)*(-5)*(-5)=(-5)^6=(-1)^6*5^6=1*5^6=5^6.
3
1)a^4*a^6=a^(4+6)=a^10
2)a^6:a^2=a^(6-2)=a^4.
4
1) (0,5)*(-3)^4=0,5*81=40,5
2)4^3-5^3+(-1)^9=64-125-1=-61-1=-62.
5
1)(x^3)^5*x^6=x^3*5*x^6=x^15*x^6=x^(15+6)=x^21
2)(n^5)^4:(n^2)^3=n^5*4:n^2*3=n^20:n^6=n^(20-6)=n^14.
6
1) -0,2a^2bc*7ab^7c^10=-0,2a^3b^8c^11
2)(-(1/4)x^3y)^3=-(1/4^3)x^9y^3=-(1/64)x^9y^3.
7
3(a-b)+2(a+b-c)+b-3c=5(a-c)
3a-3b+2a+2b-2c+b-3c=5(a-c)
(3+2)a+(-3+2+1)b-(2+3)c=5(a-c)
5a+0b-5c=5(a-c)
5a-5c=5(a-c)
5(a-c)=5(a-c).
8
1)0,6x^3y*(-5xy^7)^2=0,6x^3y*25x^2y^14=15x^5y^15
2)(-(1/3)a^5b^3)^4*(9a^3b)^2=(1/3^4)a^20b^12*81a^6b^2=
=(1/81)*a^26b^12*81=a^26b^12.
9
1) 7^14=(7^2)^7=49^7>49^5
2)3^40=(3^4)^10=81^10
4^30=(4^3)^10=64^10
81^10>64^10
3^40>4^30.
10
3a^2b=5
1)15a^2b=5*3a^2b=5*5=25
2)18a^4b^2=2*3a^2b*3a^2b=2*5*5=50.