В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Dvoeshnik666
Dvoeshnik666
26.07.2022 13:15 •  Алгебра

1. Приведите примеры числового и нечислового множеств. 2. Сформулируйте признак, по которому составлено множество
A = (-3; -2; -1; 0; 1; 2; 3).
3. Что называется подмножеством данного множества? Приведите при-
мер.
4. Запишите с перечисления элементов множество
{x/x e Z, х> -2 их < 5).

Показать ответ
Ответ:
mkagermazov
mkagermazov
23.05.2023 15:52
Если функция имеет вид  y=2x^3+9x^2-18x+15, то вот её график:

Область определения функции. ОДЗ: -00<x<+00
Точка пересечения графика функции с осью координат Y:График пересекает ось Y, когда x равняется 0: подставляем x=0 в 2*x^3+9*x^2-18*x+15. 
Результат: y=15. Точка: (0, 15)Точки пересечения графика функции с осью координат X:График функции пересекает ось X при y=0, значит нам надо решить уравнение:2*x^3+9*x^2-18*x+15 = 0Решаем это уравнение  и его корни будут точками пересечения с X:
x=-(3*sqrt(85)/4 + 111/8)**(1/3) - 21/(4*(3*sqrt(85)/4 + 111/8)**(1/3)) - 3/2. Точка: (-(3*sqrt(85)/4 + 111/8)**(1/3) - 21/(4*(3*sqrt(85)/4 + 111/8)**(1/3)) - 3/2, 0)Экстремумы функции:Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:
y'=6*x^2 + 18*x - 18=0
Решаем это уравнение и его корни будут экстремумами:
Квадратное уравнение, решаем относительно x: 
Ищем дискриминант:D=18^2-4*6*(-18)=324-4*6*(-18)=324-24*(-18)=324-(-24*18)=324-(-432)=324+432=756;
Дискриминант больше 0, уравнение имеет 2 корня:x_1=(2root756-18)/(2*6)=(2root756-18)/12=2root756/12-18/12=2root756/12-1.5 ≈ 0.79128784747792;
x_2=(-2root756-18)/(2*6)=(-2root756-18)/12=-2root756/12-18/12=-2root756/12-1.5 ≈ -3.79128784747792.x=-3/2 + sqrt(21)/2. Точка: (-3/2 + sqrt(21)/2, -9*sqrt(21) + 2*(-3/2 + sqrt(21)/2)^3 + 9*(-3/2 + sqrt(21)/2)^2 + 42)x=-sqrt(21)/2 - 3/2. Точка: (-sqrt(21)/2 - 3/2, 2*(-sqrt(21)/2 - 3/2)^3 + 9*sqrt(21) + 42 + 9*(-sqrt(21)/2 - 3/2)^2)Интервалы возрастания и убывания функции:Найдем интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим на ведет себя функция в экстремумах при малейшем отклонении от экстремума:Минимумы функции в точках:-3/2 + sqrt(21)/2Максимумы функции в точках:-sqrt(21)/2 - 3/2Возрастает на промежутках: (-oo, -sqrt(21)/2 - 3/2] U [-3/2 + sqrt(21)/2, oo)Убывает на промежутках: [-sqrt(21)/2 - 3/2, -3/2 + sqrt(21)/2]Точки перегибов графика функции:Найдем точки перегибов для функции, для этого надо решить уравнение y''=0 - вторая производная равняется нулю, корни полученного уравнения будут точками перегибов указанного графика функции, 
+ нужно подсчитать пределы y'' при аргументе, стремящемся к точкам неопределенности функции:y''=12*x + 18=0
Решаем это уравнение и его корни будут точками, где у графика перегибы:x=-3/2. Точка: (-3/2, 111/2)Интервалы выпуклости, вогнутости:Найдем интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках изгибов:Вогнутая на промежутках: [-3/2, oo)Выпуклая на промежутках: (-oo, -3/2]Вертикальные асимптоты графика функции:Горизонтальную асимптоту найдем с предела данной функции при x->+oo и x->-oo. Соотвествующие пределы находим :lim 2*x^3+9*x^2-18*x+15, x->+oo = oo, значит горизонтальной асимптоты справа не существуетlim 2*x^3+9*x^2-18*x+15, x->-oo = -oo, значит горизонтальной асимптоты слева не существуетНаклонные асимптоты графика функции:Наклонную асимптоту можно найти, подсчитав предел данной функции, деленной на x при x->+oo и x->-oo. Находим пределы :lim 2*x^3+9*x^2-18*x+15/x, x->+oo = oo, значит наклонной асимптоты справа не существуетlim 2*x^3+9*x^2-18*x+15/x, x->-oo = oo, значит наклонной асимптоты слева не существуетЧетность и нечетность функции:Проверим функци четна или нечетна с соотношений f(x)=f(-x) и f(x)=-f(x). Итак, проверяем:2*x^3+9*x^2-18*x+15 = -2*x^3 + 9*x^2 + 18*x + 15 - Нет2*x^3+9*x^2-18*x+15 = -(-2*x^3 + 9*x^2 + 18*x + 15) - Нетзначит, функция не является ни четной ни нечетной
0,0(0 оценок)
Ответ:
helppliizzzz
helppliizzzz
24.07.2022 14:22
МЕТОД ИНТЕРВАЛОВ:

перепишем неравенство в виде
x(x+5)(6x-2)(2x-4) \geq 0
или
x(x+5)(x-\frac{1}{3})(x-2) \geq 0
ищем критические точки
x=0;x_1=0
x+5=0;x_2=-5;
x-\frac{1}{3}=0;x_3=\frac{1}{3}
x-2=0;x_4=2

в порядке возростания {-5}; {0} ; {\frac{1}{3}} ; {2}
они разбивают числовую пряммую на пять промежутков
(-\infty;-5);(-5;0);(0;\frac{1}{3});(\frac{1}{3};2);(2;+\infty)
 на которых функция задающая л.ч неравенства сохраняет знак

при єто так как у нас множители вида (x-A)^n, где n- нечетное число (а в данном случае для каждого из четырех множителей n_1=n_2=n_3=n_4=1
то переходе через критическую точку функция меняет знак на противоположный

найдем знак функции для какой нибудь точки з интервала (2;+\infty)
 напр. для 1000 (важен знак ---а не само значение)
f(1000)=1000*(1000+5)*(1000-\frac{1}{3})*(1000-2)0
значит знак на промежутке (2;+\infty) "+"
переходим через точку {2}
и получаем что на интервале (\frac{1}{3};3) знак "-"
переходим через точку {\frac{1}{3}}
и получаем что на интервале (0;\frac{1}{3}) знак "+"
переходим через точку {0}
и получаем что на интервале (-5;0) знак "-"
переходим через точку {-5}
и получаем что на интервале (-\infty;-5) знак "+"

обьединяем получаем ответ:
(-\infty;-5] \cup [0;\frac{1}{3}] \cup [2;+\infty)
(включительно так как знак больше РАВНО 0 --а множителей в знаменателе на исключение нет)
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота