В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
котейка52
котейка52
19.11.2020 14:12 •  Алгебра

1) Пусть p: x - простое число и q: х - нечетное число Какие из выводов сделаны правильно?
а)Если х - простое число, то оно нечетно. х- простое или нечетное число.
Следовательно, х-нечетное число;
b)х-нечетное и простое число, но не одновременно. х-нечетное число.
Следовательно, х-простое число.

Показать ответ
Ответ:
ksenyakozlova2
ksenyakozlova2
05.07.2021 23:23
Обозначим учеников точками на плоскости, а дружеские связи отрезками, соединяющими эти точки. Пусть в классе n учеников. Т.к. из каждой точки выходит ровно 3 отрезка и каждый отрезок связывает 2 точки, то количество отрезков равно 3n/2.
1) Если n=25, то 3*25/2 не является целым числом, поэтому в классе не могло быть 25 учеников.
2) Если n=18, то 3*18/2=27. Т.е. должно быть 27 отрезков. Но это еще не доказывает, что 18 точек можно связать 27 отрезками так, что из каждой точки выходит ровно 3 отрезка, поэтому предъявим такое расположение. Поместим точки в вершинах выпуклого 18 угольника, пронумеруем их по порядку от 1 до 18, и нарисуем стороны этого 18-угольника. В результате, каждая его вершина будет связана с двумя соседними,  т.е. из каждой вершины выходит ровно 2 отрезка. Осталось соединить вершины 9 диагоналями так, чтобы из каждой вершины выходила ровно одна диагональ. Т.к. количество точек четное, то это возможно: например соединяем точки так: [1,10], [2,11], [3,12],..., [9,18].  Видим, что это действительно дает диагонали, т.к. в каждой паре разница между номерами не равна 1. При этом каждая вершина участвует по одному разу. Понятно, что это работает и для любого четного n.
0,0(0 оценок)
Ответ:
allihen
allihen
05.07.2021 23:23
Обозначим учеников точками на плоскости, а дружеские связи отрезками, соединяющими эти точки. Пусть в классе n учеников. Т.к. из каждой точки выходит ровно 3 отрезка и каждый отрезок связывает 2 точки, то количество отрезков равно 3n/2.
1) Если n=25, то 3*25/2 не является целым числом, поэтому в классе не могло быть 25 учеников.
2) Если n=18, то 3*18/2=27. Т.е. должно быть 27 отрезков. Но это еще не доказывает, что 18 точек можно связать 27 отрезками так, что из каждой точки выходит ровно 3 отрезка, поэтому предъявим такое расположение. Поместим точки в вершинах выпуклого 18 угольника, пронумеруем их по порядку от 1 до 18, и нарисуем стороны этого 18-угольника. В результате, каждая его вершина будет связана с двумя соседними,  т.е. из каждой вершины выходит ровно 2 отрезка. Осталось соединить вершины 9 диагоналями так, чтобы из каждой вершины выходила ровно одна диагональ. Т.к. количество точек четное, то это возможно: например соединяем точки так: [1,10], [2,11], [3,12],..., [9,18].  Видим, что это действительно дает диагонали, т.к. в каждой паре разница между номерами не равна 1. При этом каждая вершина участвует по одному разу. Понятно, что это работает и для любого четного n.
0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота