Домножим уравнение на 2sinz (не забудем, что sinz=0 не дает решения исходного уравнения), тогда т.к. 2sinzcosz=sin2z получим: sin2zcos2zcos4zcos8z=1/8*sinz. Домножим уравнение на два и т.к. 2sin2zcos2z=sin4z получим: sin4zcos4zcos8z=1/4*sinz. Домножим уравнение опять на два и т.к. 2sin4zcos4z=sin8z получим: sin8zcos8z=1/2*sinz. Домножим уравнение еще раз два и т.к. 2sin8zcos8z=sin16z получим: sin16z=sinz. sin16z-sinz=0 <=> 2sin(17z/2)*cos(15z/2)=0 Получаем два случая: sin(17z/2)=0 <=> 17z/2=pi*k <=> z=2*pi*k/17, исключая z=2*pi*n. cos(15z/2)=0 <=> 15z/2=pi/2+pi*m <=> z=pi/15+2*pi*m/15, исключая z=pi+2*pi*l.
Домножим уравнение на два и т.к. 2sin2zcos2z=sin4z получим: sin4zcos4zcos8z=1/4*sinz.
Домножим уравнение опять на два и т.к. 2sin4zcos4z=sin8z получим: sin8zcos8z=1/2*sinz.
Домножим уравнение еще раз два и т.к. 2sin8zcos8z=sin16z получим: sin16z=sinz.
sin16z-sinz=0 <=> 2sin(17z/2)*cos(15z/2)=0
Получаем два случая:
sin(17z/2)=0 <=> 17z/2=pi*k <=> z=2*pi*k/17, исключая z=2*pi*n.
cos(15z/2)=0 <=> 15z/2=pi/2+pi*m <=> z=pi/15+2*pi*m/15, исключая z=pi+2*pi*l.
получится дробь, у которой числитель = 2( х + 1) -(х² - х + 1) - 2х + 1=
=2х + 2 - х² + х - 1 - 2х + 1 = - х² + х + 2
В знаменателе : х³ +1
Неравенство запишем (- х² + х + 2)/( х³ + 1) ≥ 0
(х² - х - 2)/(х³ +1) ≤ 0
(х - 2)( х + 1)/(х³ + 1) ≤ 0
(х - 2)/(х² - х + 1) ≤ 0
х² - х + 1 всегда > 0,⇒х - 2 ≤ 0⇒ х ≤ 2 ( х ≠ -1)
ответ х∈ ( -∞ ; -1)∨(-1; 2]
наибольшее целое х = 2
2)Числитель (х - 3)(х + 10)(х + 9)(х - 1)
Знаменатель (х +9)( х - 1)
После сокращения получим неравенство: (х - 3)(х + 10)<0
-∞ + -10 - -9 - 1 - 3 + +∞
ответ х ∈(-10; -9)∨(-9; 1)∨(1; 3)