1)составьте многочлен p(x) = p¹(x) + p²(x) - 4p³(x) и запишите его в стандартном виде,если p¹(x) = -2x² + 3x p²(x) = 4x² - 3 p³(x) = 2x - 4 2)преобразуйте заданное выражение в многочлен стандартного вида: а)4xy(2x + 0,5y - xy) б)(x - 3)(x + 2) в)(24x²y + 18x³) : ( - 6x²) 3) выражение,используя формулы сокращённого умножения : (2p - 3)(2p + 3) + (p-2)² 4)найдите три последовательных натуральных числа,если известно,что квадрат большего из них на 34 больше произведения двух других 5)докажите что значение выражения не зависит от переменной 5x³ - 5(x + 2)(x² - 2x +4)
S = a · b = 36 м² - площадь фасада
Пусть а = х м - высота, тогда b = (х + 9) м - длина. Уравнение:
х · (х + 9) = 36
х² + 9х - 36 = 0
D = b² - 4ac = 9² - 4 · 1 · (-36) = 81 + 144 = 225
√D = √225 = 15
х = (-9-15)/(2·1) = (-24)/2 = -12 (не подходит, так как < 0)
х = (-9+15)/(2·1) = 6/2 = 3 (м) - высота
36 : 3 = 12 (м) - длина
Или так: (3 + 9) = 12 (м) - длина
6м х 1м = 6 м² - площадь одного металлосайдинга
36 м² : 6 м² = 6 (шт.) - количество
6 · 1000 = 6 000 (руб.) - стоимость материала
ответ: 3 м высота, 12 м длина, 6 штук на 6 000 рублей.
Замена: x/2 = t
4sin2 t - 3(sin2 t + cos2 t) = 2 · sin t · cos t
sin2 t - 3cos2 t - 2sin t · cos t = 0 | : cos2 t ≠0
Действительно, если cos t = 0 (т.е. и cos2 t =0), то sin2 t - 3*0- 2sin t · 0 = 0. Получаем sin2 t =0
Т.е. sin t =0. Но тогда не выполнится основное тригонометрическое тождество: sin2 t + cos2 t = 0+0=0≠1!
tg2 t - 3 - 2 tg t = 0
По т. обр т. Виета подберём корни (чтобы не делать еще одну замену):
tg2 t - 2 tg t - 3 = 0
(tg t + 1) (tg t - 3) = 0
tg t = -1 или tg t = 3
tg x/2 = -1 или tg x/2 = 3
x/2 = arctg (-1) + πk; k€Z
x/2 = arctg (3) + πk; k€Z
x/2 = -π/4 + πk; k€Z
x/2 = arctg (3) + πk; k€Z
x = -π/2 + 2πk; k€Z
x = 2 arctg 3 + 2πk; k€Z
ответ:
x = -π/2 + 2πk; k€Z
x = 2 arctg 3 + 2πk; k€Z