В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Иван66665
Иван66665
18.09.2022 08:04 •  Алгебра

1)составьте многочлен p(x)=p1(x)+p3(x)-4p2(x)
p1(x)=3x^2-2x
p2(x)=x+4
p3(x)=5x^2+7
p(x)=p3(x)-p2(x)+2p1(x)
2)преобразуйте заданное выражение в многочлен стандартного вида
3xy(2x^2-4y^3+x^2y^2)
(m+3)(m-7)
(24a^3b^2-8a^2b^3+16a^2b^2):8a^2b^2
3)у выражение используя формулы сокращённого умножения
(с НУЖНО ОЧЕНЬ

Показать ответ
Ответ:
timursharipov2
timursharipov2
19.04.2023 19:45

Для решения запишем формулу бинома Ньютона:

(a+b)^n=a^n+C_n^1a^{n-1}b+C_n^2a^{n-2}b^2+...+b^n

Если а - слагаемое, содержащее неизвестную в наибольшей степени, то для определения степени результата нужно рассмотреть выражение a^n.

Если b - слагаемое, не содержащее неизвестную, то для определения свободного члена результата нужно рассмотреть выражение b^n.

Рассмотрим многочлен S(x)=P(x)\cdot Q(x), где:

P(x)=(3x^7+6x^4-1)^{12}

Q(x)=(5x^2+2)^3

Для определения степени и свободного члена произведения достаточно знать степень и свободный член каждого из множителей.

Для многочлена P(x)=(3x^7+6x^4-1)^{12}:

- степень определяется выражением (3x^7)^{12}=3^{12}\cdot x^{7\cdot12}=3^{12}\cdot x^{84}, то есть степень равна 84

- свободный член равен (-1)^{12}=1

Для многочлена Q(x)=(5x^2+2)^3:

- степень определяется выражением (5x^2)^3=5^3\cdot x^{2\cdot3}=125\cdot x^6, то есть степень равна 6

- свободный член равен 2^3=8

Наконец, для многочлена S(x)=P(x)\cdot Q(x) получим:

- степень определяется выражением x^{84}\cdot x^6=x^{84+6}=x^{90}, то есть степень равна 90

- свободный член равен 1\cdot8=8

Сумма степени и свободного члена многочлена S(x):

90+8=98

ответ: 98

0,0(0 оценок)
Ответ:
христяч
христяч
29.10.2021 02:04

В решении.

Объяснение:

Дана функция у=√х:  

а) График которой проходит через точку с координатами А(а; 9). Найдите значение а.  

Нужно в уравнение подставить известные значения х и у (координаты точки А):  

9 = √а  

(9)² = (√а)²  

81 = а  

а=81;  

б) Если х∈[0; 9], то какие значения будет принимать данная функция?  

у= √х  

у=√0=0;  

у=√9=3;  

При х∈ [0; 9]   у∈ [0; 3].  

в) y∈ [4; 121]. Найдите значение аргумента.  

4 = √х  

(4)² = (√х)²  

х=16;  

121 = √х  

(121)² = (√х)²  

х=14641;  

При х∈ [16; 14641]   y∈ [4; 121].  

г) Найдите при каких х выполняется неравенство у ≤ 3.

у ≤ 3

√х  ≤ 3

(√х)²  ≤ (3)²

х  ≤ 9;

Неравенство у ≤ 3 выполняется при х  ≤ 9.

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота