Обозначим скорость катера по течению за х км/ч. Тогда скорость катера в стоячей воде равна (х-4) км/ч. По реке катер шел 15/x часов, по стоячей воде 4/(x-4) часов. Имеем уравнение: 15/x+4/(x-4)=1 15*(x-4)+4*x=x*(x-4) 15*x-60+4*x=x^2-4*x Имеем квадратное уравнение: x^2-23*x+60=0 Д=(-23)^-4*1*60=289 x1,2=23+-17 РАЗДЕЛИТЬ ВСЕ НА 2 x1=20 (км/час) x2=3 (км/час) - посторонний корень, скорость катера по течению не может быть меньше скорости течения. Проверка: 15/20+4/(20-4)=3/4+4/16=3/4+1/4=1 (час), что совпадает с условием задачи ответ: Скорость катера по течению равна 20 км/x
= ( log₀₎₂x - log₀₎₂25)*( log₀₎₂x - log₀₎₂25)= (log₀₎₂x +2)* (log₀₎₂x +2)=
= (log₀₎₂x +2)²= log₀₎₂²x +4log₀₎₂x +4
2)log₀₎₂²(x/5) = log₀₎₂(x/5)*log₀₎₂(x/5) = (log₀₎₂x - log₀₎₂5)*(log₀₎₂x - log₀₎₂5)=
=(log₀₎₂x +1)*(log₀₎₂x +1)= (log₀₎₂x +1)² = log₀₎₂²x + 2log₀₎₂x +1
3) Само уравнение:
log₀₎₂²x +4log₀₎₂x +4 +log₀₎₂²x + 2log₀₎₂x +1 = 1 (ОДЗ: x > 0)
log₀₎₂x = t
t² +4t +4 +t² +2t = 0
2t² +6t +4 = 0
t² +3t +2 = 0
По т. Виета
а) t = -2, ⇒ log₀₎₂x = -2, x = 0,2⁻² = 25
б) t = -1, ⇒ log₀₎₂x = -1, ⇒ x = 0,2⁻¹ = 5
ответ: 125
Обозначим скорость катера по течению за х км/ч. Тогда скорость катера в стоячей воде равна (х-4) км/ч. По реке катер шел 15/x часов, по стоячей воде 4/(x-4) часов.
Имеем уравнение:
15/x+4/(x-4)=1
15*(x-4)+4*x=x*(x-4)
15*x-60+4*x=x^2-4*x
Имеем квадратное уравнение:
x^2-23*x+60=0 Д=(-23)^-4*1*60=289
x1,2=23+-17 РАЗДЕЛИТЬ ВСЕ НА 2
x1=20 (км/час)
x2=3 (км/час) - посторонний корень, скорость катера по течению не может быть меньше скорости течения.
Проверка:
15/20+4/(20-4)=3/4+4/16=3/4+1/4=1 (час), что совпадает с условием задачи
ответ: Скорость катера по течению равна 20 км/x