Докажите признак параллелограмма по двум противоположным сторонам, которые равны и параллельны.
Доказательство
Дано: четырёхугольник АВСD; сторона ВС равна и параллельна стороне АD.
Доказать, что АВСD - параллелограмм.
Для доказательства проведем диагональ AC, в результате чего четырёхугольник АВСD разобьется на два треугольника - Δ ABC и ΔACD.
Сторона ВС треугольника АВС равна стороне АD треугольника AСD - согласно условию.
Сторона АС треугольника АВС равна стороне АС треугольника ACD - согласно построению: проведённая диагональ является общей стороной данных треугольников.
∠ВСА треугольника АВС равен ∠САD треугольника ACD - как углы внутренние накрест лежащие при параллельных прямых ВС║AD и секущей АС.
Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны (первый признак равенства треугольников).
Из равенства треугольников ABC и АCD следует, что сторона АВ = CD.
АВ также параллельна СD, так как ∠ВАС треугольника АВС равен ∠АСD треугольника ACD; а так как эти углы являются внутренними накрест лежащими при прямых АВ и СD и секущей АС, то это означает, что АВ ║СD.
Таким образом, в четырёхугольнике АВСD обе пары противоположных сторон равны и параллельны друг другу, следовательно, четырёхугольник АВСD является параллелограммом.
Таким образом, мы доказали, что: если две противоположные стороны четырёхугольника равны и параллельны, то этот четырёхугольник – параллелограмм (второй признак параллелограмма).
См. Объяснение
Объяснение:
Задание
Докажите признак параллелограмма по двум противоположным сторонам, которые равны и параллельны.
Доказательство
Дано: четырёхугольник АВСD; сторона ВС равна и параллельна стороне АD.
Доказать, что АВСD - параллелограмм.
Для доказательства проведем диагональ AC, в результате чего четырёхугольник АВСD разобьется на два треугольника - Δ ABC и ΔACD.
Сторона ВС треугольника АВС равна стороне АD треугольника AСD - согласно условию.
Сторона АС треугольника АВС равна стороне АС треугольника ACD - согласно построению: проведённая диагональ является общей стороной данных треугольников.
∠ВСА треугольника АВС равен ∠САD треугольника ACD - как углы внутренние накрест лежащие при параллельных прямых ВС║AD и секущей АС.
Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны (первый признак равенства треугольников).
Из равенства треугольников ABC и АCD следует, что сторона АВ = CD.
АВ также параллельна СD, так как ∠ВАС треугольника АВС равен ∠АСD треугольника ACD; а так как эти углы являются внутренними накрест лежащими при прямых АВ и СD и секущей АС, то это означает, что АВ ║СD.
Таким образом, в четырёхугольнике АВСD обе пары противоположных сторон равны и параллельны друг другу, следовательно, четырёхугольник АВСD является параллелограммом.
Таким образом, мы доказали, что: если две противоположные стороны четырёхугольника равны и параллельны, то этот четырёхугольник – параллелограмм (второй признак параллелограмма).
В решении.
Объяснение:
Из двух городов одновременно навстречу друг другу отправились два
велосипедиста. Проехав некоторую часть пути, первый велосипедист
сделал остановку на 30 минут, а затем продолжил движение до
встречи со вторым велосипедистом. Расстояние между городами
составляет 74 км, скорость первого велосипедиста равна 27 км/ч,
скорость второго 8 км/ч. Определите расстояние от города, из
которого выехал второй велосипедист, до места встречи.
Запишите решение и ответ.
Формула движения: S=v*t
S - расстояние v - скорость t – время
30 минут (остановка) = 0,5 часа.
х - расстояние от города, из которого выехал второй велосипедист, до места встречи.
74 - х - расстояние первого велосипедиста до встречи.
(74 - х)/27 + 0,5 - время первого велосипедиста.
х/8 - время второго велосипедиста.
По условию задачи уравнение:
(74 - х)/27 + 0,5 = х/8
Умножить все части уравнения на 216, чтобы избавиться от дроби:
8(74 - х) + 0,5*216 = 27*х
592 - 8х + 108 = 27х
-8х - 27х = - 700
-35х = -700
х = -700/-35
х = 20 (км) - расстояние от города, из которого выехал второй велосипедист, до места встречи.
Проверка:
54/27 + 0,5 = 20/8
2,5 = 2,5 (часа), верно.