1) сумма двух целых чисел равна 24 найдите эти числа если известно что их произведение принимает наименьшее значение 2) известно что одно из двух чисел на 36 больше другого найдите эти числа если известно что их произведение принимает наименьшее значение
3) периметр прямоугольника состовляет 56 см каковы его стороны если этот прямоугольник имеет наибольшую площадь
4) разность двух чисел равна 10 найдите эти числа если известно что их произведение принимает наименьшее значение
5) представьте число 3 в виде суммы двух положительных слагаемых так чтобы сумма утроенного первого слагаемого и куба второго слагаемого была наименьшей
2. Натуральным числом. Множество натуральных чисел алгебраически замкнуто относительно операции сложения.
3. В том случае, если уменьшаемое больше вычитаемого.
4. Произведение натуральных чисел — натуральное число. Множество натуральных чисел алгебраически замкнуто относительно операции умножения.
5. Нет, не всегда. Пример: 9 не делится нацело на 5. В таком случае можно разделить с остатком, где неполное частное и остаток будут натуральными числами.
6. На единицу (нейтральный элемент в аксиоматике умножения).
Здесь формулы сокращенного умножения.
a(b^2+2bc+c^2)+b(c^2+2ac+a^2)+c(a^2+2ab+b^2)-4abc=
ab^2+2abc+ac^2+bc^2+2abc+ba^2+ca^2+2abc+cb^2-4abc=
ab^2+2abc+ac^2+bc^2+ba^2+ca^2+cb^2=ab^2+2abc+c^2(a+b)+a^2(b+c)+cb^2=
b^2(a+c)+c^2(a+b)+a^2(b+c)+2abc
А (a+b)(b+c)(c+a)= если перемножать первые две скобки, то = ab+ac+b^2+bc и это умножить на третью скобку, то = (c+a)(ab+ac+b^2+bc)= abc+ac^2+b^2c+bc^2+a^2b+a^2c+ab^2+abc=
c^2(a+b)+b^2(c+a)+a^2(b+c)+2abc.
Эти два выражения равны, то есть
b^2(a+c)+c^2(a+b)+a^2(b+c)+2abc = c^2(a+b)+b^2(c+a)+a^2(b+c)+2abc то есть = (a+b)(b+c)(c+a)=(a+b)(b+c)(c+a)
Желаю удачи!