В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
DmitriyKefir
DmitriyKefir
16.04.2020 03:21 •  Алгебра

1) Түзу бойында K,L,P,T және S,E нүктелерін белгілеңіз? Неше кесінді пайда болады.Оларды жазыңыз

2)-2х-7у+20=0

Показать ответ
Ответ:
Asuna2001
Asuna2001
26.07.2022 05:40

Объяснение:

1) 2х + 1 = 3х - 4

Перенесём известные слагаемые в одну сторону, неизвестные в другую:

2x-3x = -4-1

-x=-5

Делим обе части на множитель при переменной x (-1)

x=5

ответ: 5.

2) 1,6(5х – 1) = 1,8х – 4,7

Раскроем скобки:

8x-1,6=1,8х-4,7

Перенесём известные слагаемые в одну сторону, неизвестные в другую:

8х-1,8х=-4,7+1,6

6,2х=-3,1

Делим обе части на множитель при переменной x (6,2)

х=-0,5

ответ: -0,5.

3) - 2х + 1 = - х - 6

Перенесём известные слагаемые в одну сторону, неизвестные в другую:

-2х+х=-6-1

-х=-7

Делим обе части на множитель при переменной x (-1)

х=7

ответ: 7.

-

0,0(0 оценок)
Ответ:
almagul82
almagul82
24.10.2020 07:34

f(x) = \dfrac{8}{(3 - 5x)^{4}} + \dfrac{3}{\cos^{2}2x} - e^{8x+1}

Совокупность всех первообразных функции f(x) называют неопределенным интегралом:

\displaystyle \int f(x) \, dx = F(x) + C,

где C — произвольная постоянная.

Тогда \displaystyle \int f(x) \, dx = \int \left(\dfrac{8}{(3 - 5x)^{4}} + \dfrac{3}{\cos^{2}2x} - e^{8x+1} \right) \, dx

Теорема: если функции F и G являются соответственно первообразными функций f и g на промежутке I, то на этом промежутке функция y = F(x) \pm G(x) является первообразной функции y = f(x) \pm g(x):

\displaystyle \int \left(f(x) \pm g(x) \right) \, dx = \int f(x) \, dx \pm \int g(x) \, dx = F(x) \pm G(x) + C,

где C — произвольная постоянная.

Тогда \displaystyle \int \left(\dfrac{8}{(3 - 5x)^{4}} + \dfrac{3}{\cos^{2}2x} - e^{8x+1} \right) \, dx =

\displaystyle = \int \dfrac{8}{(3 - 5x)^{4}} dx + \int \dfrac{3}{\cos^{2}2x} dx - \int e^{8x+1} dx

Теорема: если функция F является первообразной для функции f на промежутке I, а k — некоторое число, то на этом промежутке функция y = kF(x) является первообразной функции y = kf(x):

\displaystyle \int kf(x) \, dx = k \int f(x) \, dx = kF(x) + C

Тогда \displaystyle \int \dfrac{8}{(3 - 5x)^{4}} dx + \int \dfrac{3}{\cos^{2}2x} dx - \int e^{8x+1} dx =

= \displaystyle 8 \int \dfrac{dx}{(3 - 5x)^{4}} + 3\int \dfrac{dx}{\cos^{2}2x} - \int e^{8x+1} dx

Теорема: если функция F является первообразной для функции f на промежутке I, а k — некоторое число, отличное от нуля, то на соответствующем промежутке функция y = \dfrac{1}{k} F(kx + b) является первообразной функции y = f(kx + b):

\displaystyle \int f(kx + b) \, dx = \dfrac{1}{k} F(kx + b) + C,

где C — произвольная постоянная.

Найдем каждый интеграл по отдельности:

1) \ \displaystyle \int \dfrac{dx}{(3 - 5x)^{4}} = \int (3 - 5x)^{-4} \, dx = \dfrac{1}{-5} \cdot \dfrac{(3 - 5x)^{-4 + 1}}{-4 + 1} + C =

= \dfrac{1}{15(3 - 5x)^{3}} + C

2) \ \displaystyle \int \dfrac{dx}{\cos^{2}2x} = \dfrac{1}{2} \, \text{tg} \, 2x + C

3) \ \displaystyle \int e^{8x+1} dx = \dfrac{1}{8} e^{8x + 1} + C

Получаем: \displaystyle 8 \int \dfrac{dx}{(3 - 5x)^{4}} + 3\int \dfrac{dx}{\cos^{2}2x} - \int e^{8x+1} dx =

= \dfrac{8}{15(3 - 5x)^{3}} + \dfrac{3}{2} \, \text{tg}\, 2x - \dfrac{1}{8} e^{8x + 1} + C

Таким образом, общий вид первообразных для функции f(x) имеет вид:

\dfrac{8}{15(3 - 5x)^{3}} + \dfrac{3}{2} \, \text{tg}\, 2x - \dfrac{1}{8} e^{8x + 1} + C

ответ: \dfrac{8}{15(3 - 5x)^{3}} + \dfrac{3}{2} \, \text{tg}\, 2x - \dfrac{1}{8} e^{8x + 1} + C

Использованные формулы интегрирования:

\displaystyle \int x^{a} \, dx = \dfrac{x^{a+1}}{a+1} + C, \ a \neq -1

\displaystyle \int \dfrac{dx}{\cos^{2}x} = \text{tg} \, x + C

\displaystyle \int e^{x} \, dx = e^{x} + C

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота