1. нет; 2. 1) общего вида 2) общего вида 3) общего вида 3. 1) -1; 3 2) 1; -3 4) -1
Объяснение:
1. Если функция нечетная то произведение f(3)f(-3) не будет положительным.
2.
1)
Это функция общего вида
2)
Это функция общего вида
3)
Это функция общего вида
3.
1)
Значит
2)
Значит
4.
Это биквадратное уравнение. Делаем подстановку
Уравнение будет иметь один корень, когда дискриминант равен 0
Но, поскольку х=±√у, то при любом положительном у мы получим два различных значения х. Одно значение х мы получим лишь в случае у=0. Тогда х=√0=0. Следовательно
Делаем проверку:
1) а=-1
Имеется одно решение (т.к выражение в скобках никогда не будет равно 0)
2) а=3
Здесь появляется второй корень. Значит, это значение не подходит.
график у=|f(x)| y=f(x), f(x)≥0 y=-f(x), f(x)<0 поэтому у=|f(x)| строится так строим f(x) и ту часть , которая будет при у≥0 оставляем как есть, а ту ,что при у<0 зеркально отражаем относительно ОХ
поэтому построим функции под модулем
у=х²-5х+6=(х-3)(х-2) у=0 х¹=2, х²=3 нули функции х=0 у=6 ветви параболы вверх
у=х²+5х+6=(х+2)(х+3) у=0 х¹=-2, х²=-3 нули функции х=0 у=6 ветви параболы вверх
в общем виде наш график определяется так
при х≤-3 у=х²+5х+6
при -3<х≤-2 у= -х²-5х-6
при -2<х<0 у=х²+5х+6
при 0≤х<2 у=х²-5х+6
при 2≤х<3 у=-х²+5х-6
при х≥3 у=х²-5х+6
наш график построен (Зелёная жирная линия)
PS на самом деле можно было построить лишь часть графика , например при х≥0
а часть при х<0 получится зеркальным отражением построенного графика относительно ОУ
потому что у(х)=|х²-5|х|+6|=| |х|²-5|х|+6 |=у=( |х| )
1. нет; 2. 1) общего вида 2) общего вида 3) общего вида 3. 1) -1; 3 2) 1; -3 4) -1
Объяснение:
1. Если функция нечетная то произведение f(3)f(-3) не будет положительным.
2.
1)
Это функция общего вида
2)
Это функция общего вида
3)
Это функция общего вида
3.
1)
Значит
2)
Значит
4.
Это биквадратное уравнение. Делаем подстановку
Уравнение будет иметь один корень, когда дискриминант равен 0
Но, поскольку х=±√у, то при любом положительном у мы получим два различных значения х. Одно значение х мы получим лишь в случае у=0. Тогда х=√0=0. Следовательно
Делаем проверку:
1) а=-1
Имеется одно решение (т.к выражение в скобках никогда не будет равно 0)
2) а=3
Здесь появляется второй корень. Значит, это значение не подходит.
Окончательно получаем решение: а=-1
у=|х²-5х+6|
при х<0
у=|х²+5х+6|
график у=|f(x)|
y=f(x), f(x)≥0
y=-f(x), f(x)<0
поэтому у=|f(x)|
строится так
строим f(x) и ту часть , которая будет при у≥0 оставляем как есть,
а ту ,что при у<0 зеркально отражаем относительно ОХ
поэтому построим функции под модулем
у=х²-5х+6=(х-3)(х-2)
у=0 х¹=2, х²=3 нули функции
х=0 у=6
ветви параболы вверх
у=х²+5х+6=(х+2)(х+3)
у=0 х¹=-2, х²=-3 нули функции
х=0 у=6
ветви параболы вверх
в общем виде наш график определяется так
при х≤-3
у=х²+5х+6
при -3<х≤-2
у= -х²-5х-6
при -2<х<0
у=х²+5х+6
при 0≤х<2
у=х²-5х+6
при 2≤х<3
у=-х²+5х-6
при х≥3
у=х²-5х+6
наш график построен
(Зелёная жирная линия)
PS
на самом деле можно было построить лишь часть графика , например при х≥0
а часть при х<0 получится зеркальным отражением построенного графика относительно ОУ
потому что
у(х)=|х²-5|х|+6|=| |х|²-5|х|+6 |=у=( |х| )