1. Укажите соответствующий вывод для каждого неравенства. Обоснуйте свой ответ. а) x2 + 4х — 10< 0; b) -2х? + 10х- 25 <0; с) x2 + 3х + 2S 0; d) x2 4> 0. 1) Неравенство не имеет решений. 2) Решением неравенства является вся числовая прямая. 3) Решением неравенства является одна точка. 4) Решением неравенства являстся закрытый промежуток. 5) Решением неравенства является открытый промежуток. 6) Решением неравенства является объединение двух промежутков
а) x² + 4x + 10 ≥ 0
D = 4² - 4· 10 = - 24
График функции у = x² + 4x + 10 - парабола веточками вверх, пересечения с осью Ох нет, т.к. D < 0, поэтому у > 0 и ответ
2) Решением неравенства является вся числовая прямая
b) -x² + 10x - 25 > 0
-(х - 5)² > 0
Поскольку -(х - 5)² < 0 при любых х, то ответ
1) Неравенство не имеет решений
c) x² + 3x + 2 ≤ 0
D = 3² - 4 · 2 = 1
x₁ = 0.5(-3 - 1) = -2
x₂ = 0.5(-3 + 1) = -1
График функции у = x² + 3x + 2 - парабола веточками вверх, пересекает ось Ох в точках с координатами x₁ = -2 и x₂ = -1 поэтому решением неравенства является интервал [-2; -1] , и ответ
4) Решением неравенства является закрытый промежуток.
d) -x² + 4 < 0
x² - 4 > 0
График функции у = x² - 4 - парабола веточками вверх, пересекает ось Ох в точках с координатами x₁ = -2 и x₂ = 2 поэтому решением неравенства является интервалы (-∞; -2) и (2; +∞) , и ответ
Объяснение: