1. В коробке вперемешку лежат одинаковые по размеру карандаши: 3 синих, 4 красных, 4 зелёных, 2 чёрных и 7 жёлтых. Вася не глядя берёт из коробки один карандаш. Найдите вероятность того, что этот карандаш: а) окажется жёлтым; б) окажется не жёлтым. 2. Монету бросают 3 раза. Найдите вероятность того, что «орёл» выпадет ровно один раз
. 3. Вероятный срок службы нового телевизора оценивается следующим образом
Срок службы Менее 1 года От 1 года, но менее 3 лет От 3, но менее 8 лет От 8, но менее 12 лет 12 лет и более
Вероятность 0,07 0,1 х 0,3 0,33
а) Найдите х.
б) Какова вероятность, что телевизор прослужит не менее 5 лет?
4. Стрелок при одном выстреле попадает в мишень с вероятностью 0,9. Если стрелок с первого раза промахивается, ему даётся вторая попытка. Если же он промахивается и во второй раз, ему даётся третья попытка. Найдите вероятность того, что с трёх попыток мишень будет поражена (первым, вторым или третьим выстрелом).
.5. В уравнение ax2 + bx + c = 0 в качестве коэффициентов подставляют a {1; 3}, b {0; 2}, c {0; 1; −4}
. а) Постройте дерево возможных вариантов таких уравнений.
б) С какой вероятностью уравнение будет иметь хотя бы один корень
tg α – tg β = tg (α – β) (1 + tg α tg β).
Получаем:
tg x tg 2x tg 3x = tg 3x – tg x + tg 4x – tg 2x,
tg x tg 2x tg 3x = tg 2x (1 + tg x tg 3x) + tg 2x (1 + tg 2x tg 4x),
tg 2x (1 + tg x tg 3x – tg x tg 3x + 1 + tg 2x tg 4x) = 0,
tg 2x = 0 или tg 2x tg 4x = –2.
С первым понятно, что делать. Второе:
tg 2x tg 4x = –2,
tg 2x · 2 tg 2x / (1 – tg² 2x) = –2,
tg² 2x = tg² 2x – 1.
Это равенство невозможно.
Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так
Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.