В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
ник4934
ник4934
10.02.2022 04:33 •  Алгебра

1. В треугольнике ABC BC>AC. Какие углы треугольника можно сравнить по этим данным?
1) A и B.
2) A и C.
3) B и C.
4) Нельзя сравнить.
2. В треугольнике DEF DF 1) D 2) F 3) E>D.
4) F>E.
3. В треугольнике KLM KM>LM>KL. Какое неравенство при этом выполняется?
1) M 2) L 3) L>K>M.
4) K>M>L.
4. Сравните стороны треугольника MON, если O 1) OM=ON 2) MN>MO>NO.
3) MO=MN 4) MN 5. В треугольнике XYZ сторона XY наибольшая. Каким может быть угол X?
1) Тупым, или прямым, или острым.
2) Тупым или прямым.
3) Острым.
4) Прямым или острым.
6. Какая сторона треугольника лежит против тупого угла?
1) Наибольшая.
2) Наименьшая.
3) Средняя по величине.
4) Нельзя определить.
7. Какая сторона треугольника лежит против острого угла?
1) Наибольшая.
2) Наименьшая.
3) Средняя по величине.
4) Нельзя определить.
8. В равнобедренном треугольнике две стороны равны 7 см и 14 см. Найдите его периметр
1) 21 см.
2) 28 см.
3) 35 см.
4) 42 см.
9. Периметр равнобедренного треугольника равен 63 см. Одна его сторона в три раза больше другой. Найдите боковую сторону треугольника.
1) 9 см.
2) 18 см.
3) 27 см.
4) 54 см.
10. Определите вид треугольника, если известно, что у него один внешний угол прямой.
1) Прямоугольный.
2) Тупоугольный.
3) Остроугольный.
4) Нельзя определить.
11. Определите вид треугольника, если известно, что у него один внешний угол острый.
1) Прямоугольный.
2) Тупоугольный.
3) Остроугольный.
4) Нельзя определить.
12. Определите вид треугольника, если один из его внутренних углов больше суммы двух других углов.
1) Прямоугольный.
2) Тупоугольный.
3) Остроугольный.
4) Нельзя определить.
13. Определите вид треугольника, если один из его внешних углов равен внутреннему углу.
1) Прямоугольный.
2) Тупоугольный.
3) Остроугольный.
4) Нельзя определить.
14. В прямоугольном треугольнике две стороны равны 20 см и 13 см. Какая из них является гипотенузой?
1) 13 см.
2) 20 см.
3) Нельзя определить.
15. Сколько наклонных можно провести из данной точки к данной прямой?
1) 1.
2) 2.
3) 4.
4) Бесконечно много.
16. Сколько наклонных заданной длины можно провести из данной точки к данной прямой?
1) 1.
2) 2.
3) 4.
4) Бесконечно много.
17. Из точки E к прямой a проведены перпендикуляр EH и наклонные EA, EB, EC. Причем известно, что AH=HB и точка C лежит между точками H и B. Сравните длины наклонных.
1) EA 2) EA 3) EA=EB 4) EC 18. Из точки F проведены к прямой b перпендикуляр FO, две равные наклонные FM, FN и наклонная FL, причем луч FM является внутренним лучом угла OFL. Сравните проекции данных наклонных.
1) LM>MO=NO.
2) LM 3) OL>OM=ON.
4) ON=OL 19. Сравните медиану треугольника с его периметром.
1) Меньше полупериметра.
2) Меньше периметра.
3) Больше полупериметра.
4) Нельзя определить.
20. Укажите точку, сумма расстояний от которой до вершин выпуклого четырехугольника будет наименьшей.

Показать ответ
Ответ:
Алина678901
Алина678901
25.02.2022 13:47
Алгоритм поиска.
Ищем точки экстремума по условию y'=0. Определяем, является ли точка минимумом или максимумом по критерию изменения знака y' в данной точке: если знак y' изменяется с "+" на "-", то функция имеет максимум; если с "-" на "+" - минимум; если не изменяется - не является экстремумом.
Наибольшее значение на отрезке определяется как максимальное значение среди всех максимумов функции на отрезке и значений функции на концах отрезка.
Наименьшее значение функции определяется как минимальное значение среди всех минимумов на отрезке и значений функции на концах отрезка.

5.10
a) y = x³ - 3x²; отрезок [-1; 3]

y(-1) = (-1)³-3(-1)² = -1-3 = -4
y(3) = 3³-3*3² = 0

y'=3x²-6x=3x(x-2). Точки, подозрительные на экстремум: x=0; x=2. При x∈(0;2) y'<0 (функция y убывает (y↓)), при x∉(0;2) y'>0 (функция y возрастает (y↑)).
y(0) = 0
y(2) = 2³-3*2² = 8-12 = -4

Слева от точки (0;0) функция y возрастающая, справа - убывающая. Значит, точка (0;0) является локальным максимумом.
Слева от точки (2;-4) функция y убывающая, справа - возрастающая. Значит, точка (2;-4) является локальным минимумом.

Наибольшее значение функции y на отрезке [-1;3] равно max (y(-1),y(0),y(3)) = max (-4,0,0) = 0 (достигается в точках x=0 и x=3.
Наименьшее значение функции y на отрезке [-1;3] равно min (y(-1),y(2),y(3)) = min (-4,-4,0) = -4 (достигается в точках x=-1 и x=2.

В остальных решениях я буду писать кратко.

б) y = 2x³ - 6x² + 9; отрезок [-2; 2]

y(-2) = 2(-2)³ - 6(-2)² + 9 = -16 - 24 + 9 = -31
y(2) = 2(2)³ - 6(2)² + 9 = 16 - 24 + 9 = 1

y' = 2*3x² - 6*2x = 6x(x-2)
y'=0 ⇒ x∈{0;2}

x∈(0;2) ⇒ y'<0 ⇒ y↓
x∉[0;2] ⇒ y'>0 ⇒ y↑

y(0) = 9

(0;9): y слева ↑, справа ↓ ⇒ (0;9) - локальный максимум
(2;1): y слева ↓, справа ↑ ⇒ (2;1) - локальный минимум

max (y(-2),y(0)) = max (-31,9) = 9 ⇒ x=0
min (y(-2),y(2)) = min (-31,1) = -31 ⇒ x=-2

5.11
а) y = 2x³ - x²; отрезок [-1; 1]

y(-1) = 2(-1)³ - (-1)² = -2 - 1 = -3
y(1) = 2(1)³ - (1)² = 2 - 1 = 1

y' = 2*3x² - 2x = 2x(3x-1)
y'=0 ⇒ x∈{0;1/3}

x∈(0;1/3) ⇒ y'<0 ⇒ y↓
x∉[0;1/3] ⇒ y'>0 ⇒ y↑

y(0) = 0
y(1/3) = 2(1/3)³ - (1/3)² = 2/27 - 1/9 = -1/27

(0;0): слева y↑, справа y↓ ⇒ (0;0) - локальный максимум
(1/3;-1/27): слева н↓, справа y↑ ⇒ (1/3;-1/27) - локальный минимум

max (y(-1),y(0),y(1)) = max (-3,0,1) = 1 ⇒ x=1
min (y(-1),y(1/3),y(1)) = min (-3,-1/27,1) = -3 ⇒ x=-1

б) y = 2x³ + 6x² + 8; отрезок [-3; 2]

y(-3) = 2(-3)³ + 6(-3)² + 8 = -54 + 54 + 8 = 8
y(2) = 2(2)³ + 6(2)² + 8 = 16 + 24 + 8 = 48

y' = 2*3x² + 6*2x = 6x(x+2)
y'=0 ⇒ x∈{-2;0}

x∈(-2;0) ⇒ y'<0 ⇒ y↓
x∉[-2;0] ⇒ y'>0 ⇒ y↑

y(-2) = 2(-2)³ + 6(-2)² + 8 = -16 + 24 + 8 = 16
y(0) = 8

(-2;16): слева y↑, справа y↓ ⇒ (-2;16) - локальный максимум
(0;8): слева y↓, справа y↑ ⇒ (0;8) - локальный минимум

max (y(-3),y(-2),y(2)) = max (8,16,48) = 48 ⇒ x=2
min (y(-3),y(0),y(2)) = min (8,8,48) = 8 ⇒ x∈{-3;0}
0,0(0 оценок)
Ответ:
KotekaClient
KotekaClient
24.05.2020 07:48
Арифметическая прогрессия задается параметрами:
- начальный элемент a₁
- разность прогрессии d

И тогда n-й элемент равен a₁+(n-1)d

Дано: а₃ = 7: a₉ = -18
Найти: a₁, a₆

В арифметической прогрессии для любых n и m одной четности элемент с индексом, равным среднему арифметическому n и m ((n+m)/2) равен среднему арифметическому элементов с индексами n и m.

6 = (3+9)/2, значит, a₆ есть среднее арифметическое элементов a₃ и a₉.

a₆ = (a₃+a₉)/2 = (7+(-18))/2 = -11/2

Разность между элементами a₃ и a₉ равна:
a₃-a₉ = (a₁+(3-1)d)-(a₁+(9-1)d) = a₁+2d-a₁-8d = -6d.
Отсюда d = (a₃-a₉)/(-6) = (7-(-18))/(-6) = -25/6

Т.к. a₃=a₁+2d, то a₁=a₃-2d

a₁ = 7-2*(-25/6) = 7+25/3 = 15+1/3
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота