8. Возможных исходов - 6, благоприятных исходов -2. Тогда вероятность равна 2/6 = 1/3;
9.
10. 4*4*3 = 48 чисел;
11.
12. 5/37 = 0,1;
13. В классе 12 + 16 - 25 = 3 ученикв и умные, и красивые. Значит ответ 3/25 = 0,12;
14. 9!/(9-6)! = 9!/3! = 60480;
15.
17. 1/10 = 0,1;
18.
21. х!/((х-1)! * (х - (х-1))!) * (х-1) = х!/(х-1)! * (х-1) = х(х-1) = 30 => х = 6 и х = -5. х = -5 не подходит, так как биноминальные коэффициенты C(n,m) определены при натуральных m,n. Значит х = 6.
2. 5*4*3 = 60 чисел;
3.
4. 0,04 + 0,1 + 0,2 = 0,34
5. 50/2500 = 0,02 = 2%;
8. Возможных исходов - 6, благоприятных исходов -2. Тогда вероятность равна 2/6 = 1/3;
9.
10. 4*4*3 = 48 чисел;
11.
12. 5/37 = 0,1;
13. В классе 12 + 16 - 25 = 3 ученикв и умные, и красивые. Значит ответ 3/25 = 0,12;
14. 9!/(9-6)! = 9!/3! = 60480;
15.
17. 1/10 = 0,1;
18.
21. х!/((х-1)! * (х - (х-1))!) * (х-1) = х!/(х-1)! * (х-1) = х(х-1) = 30 => х = 6 и х = -5. х = -5 не подходит, так как биноминальные коэффициенты C(n,m) определены при натуральных m,n. Значит х = 6.
22. 17!/(2!*(17-2)!) = 17!/(2!*15!) = 136;
23. Упорядояим ряд: 2,3,3,3,4,4,4,4,5,5.
Медиана равна 4, среднее арифметическое - 3,7.
Модуль разности равен |4 - 3,7| = 0,3;
Нет такой арифметической прогрессии
Объяснение:
Нужно знать:
1) Формула n-го члена арифметической прогрессии
где a₁ - первый член, d - разность арифметической прогрессии.
2) Сумма первых n членов арифметической прогрессии (аn) обозначается Sn:
Решение. Известно
a₃-a₁=8, a₂+a₄=14, Sn=111.
Так как
a₃-a₁=a₁+2·d-a₁=2·d,
то определим разность d:
2·d=8 или d=4.
Из второго равенства находим a₁:
a₂+a₄=a₁+d+a₁+3·d=2·a₁+4·d=2·a₁+4·4=2·a₁+16=14, то
2·a₁=14-16 или 2·a₁= -2 или a₁= -1.
Из второго равенства находим число членов арифметической прогрессии в сумме:
2·n²-3·n-111=0
D=(-3)²-4·2·(-111)=9+888=897
Так как √897 - иррациональное число, то при таких условиях нет решения.