1.Вычислите значение выражения 4^(1/2)+8^(2/3)+√(16.)
2.Найдите значение cos a , если известно, что sin a= 1/2 и 0 < a <( π)/( 2)
3.Решите уравнение 2^(4х+1)=16^2х.
4.Решите уравнение 1/3 √(х-5)=4
5.Решите уравнение соs^2 х+sinx=-sin^2 x
6.Основанием прямой призмы является ромб со стороной 14 см и углом 30 °. Меньшее из диагональных сечений призмы является квадратом. Найдите объем призмы.
а - наименьший, b - средний по величине, c - наибольший.
Находим сумму наименьшего с наибольшим: а+с
Так как сумма углов треугольника равна 180°, то b=180°-(a+c)
Анализируем предложенные ответы:
А) если (а+с)=61°, то b=180°-61°=119° - тупой угол, следовательно наибольший угол - противоречие условию "b - средний по величине угол"
Б) если (а+с)=90°, то b=180°-90°=90° - прямой угол, следовательно наибольший угол - также противоречие условию "b - средний по величине угол"
В) если (а+с)=91°, то b=180°-91°=89° - в качестве примера отлично подходят углы а=1°, с=90° - полное соответствие условию: а - наименьший, b - средний, с - наибольший угол.
Дальнейшая проверка ответов не имеет смысла, так как необходимо было найти самый маленький результат.
ответ: 91°
Цифры 0 быть не может (иначе она должна была бы стоять первой, так как меньше остальных чисел, но число с 0 начинаться не может, как не может и быть "хорошей" цифра 0, если она есть в числе).
Цифры 9 также быть не может (так как она хорошая, то их в числе ровно 9, но число 8-значное, то есть 9 в числе больше, чем цифр. Противоречие)
Такое число состоит из следующих групп:
1, 22, 333, 4444, 55555, 666666, 7777777, 88888888
(так как одинаковые цифры стоят подряд, и цифра A встречается ровно A раз). Причем каждая из групп встречается в числе не более 1 раза.
Если есть 8, то число единственное: 88888888
Если есть 7, то есть группа из 7 семерок, остается 1 незанятая позиция, а группа занять ровно 1 место. Значит такое число также единственное: 17777777
Если есть 6, то остается 2 незанятых позиции. Туда помещаются только 2 группы: 1 и 22. Но если поместить 1, то останется только одна позиция, а поместить туда нечего. Поэтому здесь тоже только одно число: 22666666
Если есть 5, то осталось 4 позиции. Действуя по аналогии с предыдущими рассуждениями, подходят только 33355555 и 12255555 (остается 3 позиции, их можно занять только группой из всех троек, либо есть 2, а значит можно поместить только 1. Если нет ни 3, ни 2, то остается группа 1 и 3 позиции. Занять не получится)
Если ни одной из вышеперечисленных цифр нет, но есть 4, то остается 5 позиций, на которые цифры можно разместить единственным
13334444 (если есть 3, то точно есть 1, если нет 3, то разместить нельзя, т.к. можно занять лишь 3 позиции)
Если нет цифр, больших 3, то занять можно лишь 6 позиций, то есть подходящих чисел больше нет.
Итого 6 чисел:
88888888, 17777777, 22666666, 33355555, 12255555, 13334444