ответ 4
https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cleft%20%5C%7B%20%5Cbegin%7Barray%7D%7Blcl%7D%203x%2B14%20%5Cgeq%204-x%20%5C%5C%20%5C%5C%20%5Cfrac%7B5x-1%7D%7B4%7D%20-%20%5Cfrac%7Bx-1%7D%7B2%7D%20%5Cgeq%203x-2%2C%20~%20%5CBig%20%7C%5Ctimes%204%20%5Cend%7Barray%7D%20%5Cright.%20%5C%5C%20%5C%5C%20%5C%5C%20%5C%5C%20%5Cleft%20%5C%7B%20%5Cbegin%7Barray%7D%7Blcl%7D%203x%2Bx%20%5Cgeq%204-14%20%5C%5C%20%5C%5C%20(5x-1)%20-%202(x-1)%20%5Cgeq%204(3x-2)%20%5Cend%7Barray%7D%20%5Cright.%20%5C%5C%20%5C%5C%20%5C%5C%20%5C%5C%20%5Cleft%20%5C%7B%20%5Cbegin%7Barray%7D%7Blcl%7D%204x%20%5Cgeq%20-10%20%5C%5C%20%5C%5C%205x-1%20-%202x%2B2%20%5Cgeq%2012x-8%20%5Cend%7Barray%7D%20%5Cright.
Найдем сначала уравнение секущей:
Она проходит через две точки:х1=-1, у1 = 2*(-1)^2 = 2
и х2 = 2, у2 = 2*2^2 = 8
Ищем уравнение секущей в виде: y=kx+b
Подставим сюда две наши точки и решим систему, найдем k:
-k+b=2
2k+b=8 Вычтем из второго первое: 3k = 6, k= 2.
Наша искомая касательная должна быть параллельна секущей, значит имее такой же угловой коэффициент. k=2
Найдем точку касания, приравняв производную нашей ф-ии двум:
Y' = 4x = 2
x = 1/2
Уравнение касательной к ф-ии в т.х0:
у = у(х0) + y'(x0)(x-x0)
Унас х0 = 1/2, у(1/2) = 2*(1/4) = 1/2, y'(1/2)= 2.
Тогда получим:
у = 1/2 + 2(х - 1/2)
у = 2х -0,5 - искомое уравнение касательной.
ответ 4
https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cleft%20%5C%7B%20%5Cbegin%7Barray%7D%7Blcl%7D%203x%2B14%20%5Cgeq%204-x%20%5C%5C%20%5C%5C%20%5Cfrac%7B5x-1%7D%7B4%7D%20-%20%5Cfrac%7Bx-1%7D%7B2%7D%20%5Cgeq%203x-2%2C%20~%20%5CBig%20%7C%5Ctimes%204%20%5Cend%7Barray%7D%20%5Cright.%20%5C%5C%20%5C%5C%20%5C%5C%20%5C%5C%20%5Cleft%20%5C%7B%20%5Cbegin%7Barray%7D%7Blcl%7D%203x%2Bx%20%5Cgeq%204-14%20%5C%5C%20%5C%5C%20(5x-1)%20-%202(x-1)%20%5Cgeq%204(3x-2)%20%5Cend%7Barray%7D%20%5Cright.%20%5C%5C%20%5C%5C%20%5C%5C%20%5C%5C%20%5Cleft%20%5C%7B%20%5Cbegin%7Barray%7D%7Blcl%7D%204x%20%5Cgeq%20-10%20%5C%5C%20%5C%5C%205x-1%20-%202x%2B2%20%5Cgeq%2012x-8%20%5Cend%7Barray%7D%20%5Cright.
Найдем сначала уравнение секущей:
Она проходит через две точки:х1=-1, у1 = 2*(-1)^2 = 2
и х2 = 2, у2 = 2*2^2 = 8
Ищем уравнение секущей в виде: y=kx+b
Подставим сюда две наши точки и решим систему, найдем k:
-k+b=2
2k+b=8 Вычтем из второго первое: 3k = 6, k= 2.
Наша искомая касательная должна быть параллельна секущей, значит имее такой же угловой коэффициент. k=2
Найдем точку касания, приравняв производную нашей ф-ии двум:
Y' = 4x = 2
x = 1/2
Уравнение касательной к ф-ии в т.х0:
у = у(х0) + y'(x0)(x-x0)
Унас х0 = 1/2, у(1/2) = 2*(1/4) = 1/2, y'(1/2)= 2.
Тогда получим:
у = 1/2 + 2(х - 1/2)
у = 2х -0,5 - искомое уравнение касательной.