S ∆=a•h:2, где а- сторона треугольника, h - высота, проведенная к ней.
Медиана любого треугольника делит его на два равновеликих, т.е. равных по площади. ( Основания и высоты, проведенные из той же вершины, что медиана, равны).
S ∆ BCP=S ∆ BAP.
Треугольник ВАР отрезком АК делится на два с общей высотой из А к КР.
Площади треугольников с равными высотами относятся как длины их оснований. ⇒
S ∆ BAK=4 S ∆ APK.
S ∆ ABP= S ∆ BAK+4 S ∆ APK. =5 S ∆ APK
S ∆ АВС=2 S ∆ ВРА=10S ∆ АРК=110 см²
-----------
Как видно из приложения, в данном случае ответ не зависит от того, какой угол треугольника равен 90°
5% = 0,05; 4% = 0,04
Пусть вкладчик внёс на первый счёт х грн, тогда доход по этому счёту составил 0,05х грн.
Пусть вкладчик внёс на второй счёт у грн, тогда доход по этому счёту составил 0,04у грн.
Если средства, внесённые на разные счета, поменять местами, то годовой доход по двум вкладам составит
0,04x + 0,05y = A гривен.
Составим систему
1) Если средства, внесённые на два счёта были одинаковы, то годовой доход не изменится :
x = y, x - y = 0, A = 1160
2) Если на первый счёт было внесено больше денег, чем на второй счёт, то годовой доход уменьшится :
x > y, x - y > 0, A < 1160
3) Если на первый счёт было внесено меньше денег, чем на второй счёт, то годовой доход увеличится :
x < y, x - y < 0, A > 1160
ответ : изменение годового дохода будет зависеть от количества внесённых денежных средств на разные счета.
S ∆=a•h:2, где а- сторона треугольника, h - высота, проведенная к ней.
Медиана любого треугольника делит его на два равновеликих, т.е. равных по площади. ( Основания и высоты, проведенные из той же вершины, что медиана, равны).
S ∆ BCP=S ∆ BAP.
Треугольник ВАР отрезком АК делится на два с общей высотой из А к КР.
Площади треугольников с равными высотами относятся как длины их оснований. ⇒
S ∆ BAK=4 S ∆ APK.
S ∆ ABP= S ∆ BAK+4 S ∆ APK. =5 S ∆ APK
S ∆ АВС=2 S ∆ ВРА=10S ∆ АРК=110 см²
-----------
Как видно из приложения, в данном случае ответ не зависит от того, какой угол треугольника равен 90°