1 задание. Сократить дробь: а) y^2+ 3y/y2
б) x^2 - 5x/x^2 - 25.
2 задание.
Выполните действия:
а)
.
б)
2x^2
- 2x/x+2
x2-4
3 задание.
Найдите значиение выражения:
y^2-12y+36/ 10y - 60
:
y^2-36 y^2+6y
При y = 50
Задание 4.
Если x/y=d, y/z=1/d, то чему равно x/z?
x+4=2x -2x+3=2x-5
x-2x=-4 -2x-2x=-5-3
-x=-4 -4x=-8
x=4 x=2
y=4+4=8 y=2*2-5=-1
Точка пересечения (4;8) Точка пересечения (2; -1)
в)y=-x; y=3x-4 г)y=3x+2; y=-0,5x-5
-x=3x-4 3x+2=-0,5x-5
-x-3x=-4 3x+0,5x=-5-2
-4x=-4 3,5x=-7
x=1 x=-2
y=-x=-1 y=3*(-2)+2=-4
Точка пересечения (1; -1) Точка пересечения (-2; -4)
Войти
АнонимМатематика21 августа 15:52
Во сколько раз увеличится периметр квадрата и во сколько раз увеличится его площадь, если каждую сторону увеличить в
3 раза?
Соотношение параметров квадрата
Приведём формулы периметра Р и площади S квадрата через длину стороны а.
периметр квадрата Р равен учетверённому размеру его стороны а: Р = 4 * а;
площадь квадрата S равна квадрату его стороны а: S = a²;
периметр и площадь квадрата связаны между собой. так как в их формулах общий параметр - сторона квадрата: S = P² / 16.
Для понятного объяснения задачи увеличим по заданию его сторону в 3 раза.Тогда новая сторона квадрата станет а1 = 3 * а.
Вычисление увеличения периметра и площади квадрата
Чтобы узнать, как при этом изменились периметр и площадь квадрата, подставим в формулы Р и S вместо "а" новое значение стороны "а1". Тогда:
Р1 = 4 * а1 = 4 * (3 * а ) = 12 * а;
S1 = а1² = (3 * а)² = 9 * а².
После того, как выразили новый периметр Р1 и площадь S1 через начальное значение стороны "а", можно ответить на вопрос задания:
для вычислений используем написанные выше формулы для площади S и периметра P;
чтобы узнать, во сколько раз увеличится периметр квадрата, нужно разделить Р1 на Р;
чтобы узнать, во сколько раз увеличится площадь квадрата, нужно разделить S1 на S.
Согласно выше сказанного, ответим на вопросы задания:
во сколько раз увеличился периметр квадрата, для чего разделим (Р1 : Р) = (12 * а) : (4 * а) = 3 (раза);
во сколько раз увеличится площадь квадрата, для чего разделим (S1 : S) = (9 * а²) : (а²) = 9 (раз).
заметим, что если периметр квадрата увеличился в 3 раза, как и сторона квадрата, то площадь, увеличивается в (3)² = 9 раз.
ответ: периметр увеличится в 3 раза, площадь увеличится в 9 раз.