В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
AceAlone
AceAlone
13.03.2020 22:21 •  Алгебра

1) записать произведение в виде степени. 2·2·2·2·2·2·2= 3·3·3·3= 10·10·10·10·10·10= 4·4·4·4·4= 2) вычислить степень. 24 = 12= 101= 33= 72= 23= 3)№1.4 (стр.31) Учебное задание: выполни следующие примеры из учебника 1) №1.1(2,3,5) 2) №1.3(3,4,5) 3) №1.5(1,2,3) 4) №1.6(1,3,5)


1) записать произведение в виде степени. 2·2·2·2·2·2·2= 3·3·3·3= 10·10·10·10·10·10= 4·4·4·4·4= 2) вы
1) записать произведение в виде степени. 2·2·2·2·2·2·2= 3·3·3·3= 10·10·10·10·10·10= 4·4·4·4·4= 2) вы
1) записать произведение в виде степени. 2·2·2·2·2·2·2= 3·3·3·3= 10·10·10·10·10·10= 4·4·4·4·4= 2) вы
1) записать произведение в виде степени. 2·2·2·2·2·2·2= 3·3·3·3= 10·10·10·10·10·10= 4·4·4·4·4= 2) вы
1) записать произведение в виде степени. 2·2·2·2·2·2·2= 3·3·3·3= 10·10·10·10·10·10= 4·4·4·4·4= 2) вы

Показать ответ
Ответ:
Alinalime10
Alinalime10
02.10.2022 08:49

9,90,99

Объяснение:

Сумма бесконечно убывающей геометрической прогрессии:

Есть правило: Бесконечная периодическая десятичная дробь равна обыкновенной дроби, в числителе которой разность между всем числом после запятой и числом после запятой до периода, а знаменатель состоит из «девяток» и «нулей», причем, «девяток» столько, сколько цифр в периоде, а «нулей» столько, сколько цифр после запятой до периода.

В первом примере

1) 0, (3). В числителе обыкновенной дроби запишем разность между всем числом после запятой (3) и числом после запятой до периода дроби (0). В периоде одна цифра, а после запятой до периода ни одной, поэтому знаменатель будет состоять из одной девятки (9).

0, 2(5). В числителе обыкновенной дроби запишем разность между всем числом после запятой (25) и числом после запятой до периода дроби (2). В периоде одна цифра, а после запятой до периода одна, поэтому знаменатель будет состоять из одной девятки и одного нуля (90).

7,(36)В числителе обыкновенной дроби запишем разность между всем числом после запятой (36) и числом после запятой до периода дроби (0). В периоде две цифры, а после запятой до периода ни одной, поэтому знаменатель будет состоять из двух девяток (99).

0,0(0 оценок)
Ответ:
yuras12d
yuras12d
20.06.2022 06:57

Гра́фик фу́нкции — геометрическое понятие в математике, дающее представление о геометрическом образе функции.

Наиболее наглядны графики вещественнозначных функций вещественного переменного одной переменной.

Для непрерывной функции двух переменных {\displaystyle z=f(x,\ y)}{\displaystyle z=f(x,\ y)} их графики представляют собой поверхности в трёхмерном пространстве, являющиеся геометрическим местом точек {\displaystyle z,\ x,\ y.}{\displaystyle z,\ x,\ y.} Эти поверхности могут быть изображены на плоскости в какой-либо изометрической проекции (см. рисунок).

Обычно графики строят в прямоугольной системе координат, на плоскости эту систему координат называют декартовой системой координат. Также графики для повышения наглядности часто строят в других системах координат, например, в полярной системе координат или других косоугольных системах координат.

В случае использования прямоугольной системы координат, график функции — это геометрическое место точек плоскости, абсциссы (x) и ординаты (y), которые связаны отображаемой функцией:

точка {\displaystyle (x,y)}(x,y) располагается (или находится) на графике функции {\displaystyle y=f(x)}y=f(x) тогда и только тогда, когда {\displaystyle y=f(x)}y=f(x).

Таким образом, функция может быть адекватно описана своим графиком.

Из определения графика функции следует, что далеко не всякое множество точек плоскости может быть графиком некоторой функции, например, из требования однозначности функции вытекает, что никакая прямая, параллельная оси ординат не может пересекать график функции более чем в одной точке. Если функция обратима, то график обратной функции (как подмножество плоскости) будет совпадать с графиком самой функции (это, попросту, одно и то же подмножество плоскости).

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота