1) Запускается компьютерная игра, вероятность что она включиться равно 0,6. Найдите вероятность , что игра запуститься ровно 6 раз 2)Запускается компьютерная игра, вероятность что она включиться равно (0,6), (0,5) , (0,4), (0,3) . Найдите вероятность , что игра не запуститься вообще
2) докажите, что число n³ - n делится на 6
Решение
при n = 2, имеем 8 - 2 = 6 утверждение верно.
Полагаем, что оно верно при n = m.
Покажем, что оно выполняется и при n = m + 1
(m+1)² - (m+1)=m³ - m + 3m² + 3m
Первые два слагаемых делятся на 6 по предположению,
вторые делятся на 3, но m(m+1) число четное, т.к. четным является
либо m либо m+1, следовательно два вторых слагаемых тоже делятся на 6, а значит и вся сумма делится на 6. утверждение доказано
y' = -3x²+12x+36
Приравниваем ее к нулю:
-3x²+12x+36 = 0
x₁ = -2
x₂ = 6
Вычисляем значения функции на концах отрезка
f(-2) = -33
f(6) = 223
f(-3) = -20
f(3) = 142
ответ: fmin = -33, fmax = 142
2)
a) 1. Находим интервалы возрастания и убывания.
Первая производная равна
f'(x) = - 6x+12
Находим нули функции. Для этого приравниваем производную к нулю
- 6x+12 = 0
Откуда:
x₁ = 2
(-∞ ;2) f'(x) > 0 функция возрастает
(2; +∞) f'(x) < 0функция убывает
В окрестности точки x = 2 производная функции меняет знак с (+) на (-). Следовательно, точка x = 2 - точка максимума.
б) 1. Находим интервалы возрастания и убывания. Первая производная.
f'(x) = -12x2+12x
или
f'(x) = 12x(-x+1)
Находим нули функции. Для этого приравниваем производную к нулю
12x(-x+1) = 0
Откуда:
x1 = 0
x2 = 1
(-∞ ;0) f'(x) < 0 функция убывает
(0; 1) f'(x) > 0 функция возрастает
(1; +∞) f'(x) < 0 функция убывает
В окрестности точки x = 0 производная функции меняет знак с (-) на (+). Следовательно, точка x = 0 - точка минимума. В окрестности точки x = 1 производная функции меняет знак с (+) на (-). Следовательно, точка x = 1 - точка максимума.
3. Исследуйте функцию с производной f(x)=2x^2-3x-1
1. D(y) = R
2. Чётность и не чётность:
f(-x) = 2(-x)² - 3*(-x) - 1 = 2x² + 3x - 1 функция поменяла знак частично. Значит она ни чётная ни нечётная
3. Найдём наименьшее и наибольшее значение функции
Находим первую производную функции:
y' = 4x-3
Приравниваем ее к нулю:
4x-3 = 0
x₁ = 3/4
Вычисляем значения функции
f(3/4) = -17/8
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
y'' = 4
Вычисляем:
y''(3/4) = 4>0 - значит точка x = 3/4 точка минимума функции.
4. Найдём промежутки возрастания и убывания функции:
1. Находим интервалы возрастания и убывания.
Первая производная равна
f'(x) = 4x-3
Находим нули функции. Для этого приравниваем производную к нулю
4x-3 = 0
Откуда:
x₁ = 3/4
(-∞ ;3/4) f'(x) < 0 функция убывает
(3/4; +∞) f'(x) > 0 функция возрастает
В окрестности точки x = 3/4 производная функции меняет знак с (-) на (+). Следовательно, точка x = 3/4 - точка минимума.