1. Знайдіть похідну функції: y=2x2+x. 2. Знайдіть похідну функції: y=2+cosx. 3. Обчисліть значення похідної функції: y=x3 у точці x=1. До ть будь-ласка, буду дуже вдячна)))
В прямоугольнике АВСД все углы равны 90 градусов, пусть сторона АВ=СД=а, ВС=АД=в. Периметр равен Р=2(а+в)=28 Диагональ АС=10, а АСД-прямоугольный треугольник, где а^2+в^2=10^2 Получаем систему уравнений 2(а+в)=28 а^2+в^2=100, из первого уравнения получим а+в=14 а=14-в, подставим а во второе уравнение (14-в)^2+в^2=100 196-28в+в^2+в^2=100 2в^2-28в+96=0, сократим на 2 в^2-14в+48=0 найдем дискрим. Д=196-192=4, корень из Д=2 в1=(14+2)/2=16/2=8 в2=(14-2)/2=12/2=6 если в=8, то а=14-8=6 если в=6, то а=14-6=8 стороны пямоугольника равны 6 и 8
По свойству обратной функции она симметрична прямой функции относительно прямой y = x.
Предположим, что у f(x) и g(x) есть точки пересечения, тогда эти точки являются общими для этих функций.
Но общая точка одна, а поскольку у каждой точки функции f(x), есть симметричная относительно y=x точка у функции g(x), то все точки пересечения функций f(x) и g(x) симметричны сами себе, то есть лежат на прямой y=x.
При этом если функция f(x) пересекает y=x в какой-то точке, то и g(x) пересекает y=x в этой же точке.
ответ: -2
Объяснение:
По свойству обратной функции она симметрична прямой функции относительно прямой y = x.
Предположим, что у f(x) и g(x) есть точки пересечения, тогда эти точки являются общими для этих функций.
Но общая точка одна, а поскольку у каждой точки функции f(x), есть симметричная относительно y=x точка у функции g(x), то все точки пересечения функций f(x) и g(x) симметричны сами себе, то есть лежат на прямой y=x.
При этом если функция f(x) пересекает y=x в какой-то точке, то и g(x) пересекает y=x в этой же точке.
Таким образом, уравнение:
f(x) = g(x)
Равносильно уравнению:
f(x) = x
x^5 + x + 32 = x
x^5 = -32
x = - 2