1.Знайти кутовий коефіцієнт січної графіка функції у = х2 , яка проходить через точки графіка з абсцисами х0 = 1 і х1 = 1,2. 2.Знайти значення похідних у точці х0 : у = 4х^2 – 2х + 3, х0 = 1; у = х4 tg x, х0 = π ; у = х0 = – 2 .
1) R=(5 корень из 3 * корень из 3) и все разделить на 3 =15/3=5 см S=пи * r в квадрате=25 см в квадрате. Длина окружности равна 2 пи*r=10пи см. 2) Длина круга l=2*пи*r, а его градусная мера 360, т.к. тут гралусная мера 120, то длина дуги I=(120/360)*пи *r=3,14*4/3=4,19(см) По такому же принципу, равна (120/360) площади окружности S=1/3*пи*r в квадрате=1/3*3,14*4в квадрате=16,75(см в квадрате) 3) 1) сторона треугольника =6 корней из 3/3=2 корня из 3 2) R=(2* корень из 3)/ корень из 3=2 3) 4/корень из 3-сторона шестиугольника 4) Периметр шестиугольника=24 корень из 3/3=8 корень из 3
S=пи * r в квадрате=25 см в квадрате.
Длина окружности равна 2 пи*r=10пи см.
2) Длина круга l=2*пи*r, а его градусная мера 360, т.к. тут гралусная мера 120, то длина дуги I=(120/360)*пи *r=3,14*4/3=4,19(см)
По такому же принципу, равна (120/360) площади окружности
S=1/3*пи*r в квадрате=1/3*3,14*4в квадрате=16,75(см в квадрате)
3) 1) сторона треугольника =6 корней из 3/3=2 корня из 3
2) R=(2* корень из 3)/ корень из 3=2
3) 4/корень из 3-сторона шестиугольника
4) Периметр шестиугольника=24 корень из 3/3=8 корень из 3
а) 5х2 = 9х + 2; б) -х2 = 5x - 14;
в) 6х + 9 = х2; г) z - 5 = z2 - 25;
д) у2 = 520 - 576; е) 15у2 - 30 = 22y + 7;
ж) 25р2 = 10p - 1; з) 299х2 + 100x = 500 - 101х2. ответ:а) 5х2 = 9х + 2; 5х2 - 9х - 2 = 0; D = 81 + 4 • 5 • 2 = 81 + 40= 121; х = (9±11)/10; х1 = -0,2; х2 = 2;
б) -х2 = 5x - 14; х2 + 5х - 14 = 0; D = 25 + 4 • 14 = 81; х = (-5±9)/2; х1 = -7; х2 = 2;
в) 6х + 9 = х2; х2 - 6х - 9 = 0; D = 36 + 4 • 9 = 36 + 36 = 72; х = (6±√72)/2; = 3 ± 3√2;
г) z - 5 = z2 - 25; z2 - z - 20 = 0; D = 1 + 80 = 81; х = (1±9)/2;; х1 = -4; х2 = 5;
д) у2 = 520 - 576; у2 - 52у + 576 = 0; D1 = 262 - 576 = 676 - 576 = 100; х = (26±10)/1; х1 = 16; х2 = 36;
е) 15у2 - 30 = 22y + 7; 15у2 -22у - 37 = 0; D = 112 + 37 • 15 = 676; х = (11±26)/15; х1 = -1; х2 = 37/15 = 2 7/15;
ж) 25р2 = 10p - 1; 25р2 - 10р + 1; D1 = 25 - 25 = 0; p = 5/25 = 1/5;
з) 299х2 + 100x = 500 - 101х2; 400х2 + 100х - 500 = 0; 4х2 + х - 5 = 0; D = 1 + 4 • 4 • 5 = 81; х = (-1±9)/8; х1 = -1 1/4; х2 = 1.