10 класс
1)запишите обыкновенную дробь в виде бесконечной десятичной периодической дроби:
4 / 7, 8 / 13
2) запишите число в виде дроби:
0, 567, 11, 3078
3) округлите числа до сотых:
15, 326, 0, 0899
4) округлите число 3, 882 до десятых и найдите абсолютную и относительную погрешности.
5) вычислите:
а) (5+12i)+(7-2i) б) (3-4i)*(-2+3i) в) (5+3i) / (8-2i)
6) найдите модуль комплексного числа:
а) 6-2i
7) вычислите:
1) ∛64, 2) ∜16, 3) -√(7& 128)
4) log_88 5) log_51
6) log_39 * log_525 7) log_34 - log_312
х²-5х +6 = х² -2х -3х+2*3 =x(x-2) -3 (x-2) = (x-3)(x-2)
2) Можно решить через дискриминант:
х² -5х+6=0
a= 1 , b= -5, с= 6
D= b² -4ac
D= (-5)² - 4*1*6= 25 - 24 = 1 ; √D= 1
D>0 - два корня уравнения
x1;х2 = (-b (+)(-) √D) / 2a
x1 = (5-1) /2 = 4/2 =2
x2= (5+1) /2 =6/2=3
аx² -bx +c = a(x-x1)(x-x2)
x²-5х+6 = 1(х-2)(х-3) =(х-2)(х-3)
1) x²+11x +24 = x²+8x+3x+ 3*8= x(x+8) +3(x+8) = (x+8)(x+3)
2)
х²+11х+24=0
D= 11²-4*1*24= 121-96= 25 ; √D= 5
x1= (-11 -5)/2 = -16/2= -8
x2 = (-11+5) /2 = -6/2 = -3
x²+11x+24= (x- (-8) ) (x-(-3) = (x+8)(x+3)
Решаем в м и сек.
10 мин. = 600 сек. Вверх по реке - это против течения.
Скорость первого катера против течения:
9 - 1 = 8 м/с, а второго 7- 1 = 6 м/с.
Пусть весь путь равен S, тогда S/6 - S/8 = 600
4S/24 - 3S/24 = 600;
S/24 = 600;
S = 600 · 24 = 14400 метров
Вниз по течению скорость первого катера:
9 + 1 = 10 м/с.
Он проплыл 14400 метров за 14400/10 = 1440 сек
Скорость второго по течению 7 + 1 = 8 м/с.
Он проплыл 14400м за 14400/8 = 1800 сек
1800 - 1440 = 360 сек = 360/60 = 6 минут
ответ: на 6 минут
___ Вроде бы так, если не ошибаюсь.