Последовательные натуральные числа образуют арифметическую прогрессию. Ее сумма: Sn = n(a1 + an)/2, где а1 - первый член прогрессии, аn - последний член. По условию а1=1, а поскольку все следующие числа представляют собой последовательно идущие числа, то последний член прогрессии совпадает с его номером n. Сумма должна быть меньше 528. Получается неравенство: 528 > n(1+n)/2 n(1+n) < 1056 n^2 + n - 1056 <0 Найдем корни: Дискриминант: Корень из (1+4•1056) = = корень из (1+4224) = = корень из 4225 = 65 n1 = (-1+65)/2 = 64/2 = 32 n2 = (-1-65)/2 = -66/2 = -33 не подходит, поскольку корень не является натуральным числом.
(n-32)(n+32) <0 n-32<0 n+32>0
n<32 n>-32 - не подходит, поскольку n >0
1 < n < 32 Это значит, что n= 31.
ответ: 31
Проверка: Если бы n=32, то: (1+32)•32/2 = 33•32/2 = 33•16 = 528, значит сумма последовательных чисел от 1 до 32 была бы равна 528.
1)3cos²x-5cosx-8=0 cosx=a 3a²-5a-8=0 D=25+96=121 a1=(5-11)/6=-1⇒cosx=-1⇒x=π+2πn,n∈z a2=(5+11)/6=2 2/3>1 нет решения
2)8cos^2x-14sinx+1=0 8-8sin²x-14sinx+1=0 sinx=a 8a²+14a-9=0 D=196+288=484 a1=(-14-22)/16=-2,25<-1 нет решения a2=(-14+22)/16=1/2⇒sinx=1/2⇒x=(-1)^n*π/6+πn,n∈z
Ее сумма:
Sn = n(a1 + an)/2,
где а1 - первый член прогрессии, аn - последний член.
По условию а1=1, а поскольку все следующие числа представляют собой последовательно идущие числа, то последний член прогрессии совпадает с его номером n. Сумма должна быть меньше 528.
Получается неравенство:
528 > n(1+n)/2
n(1+n) < 1056
n^2 + n - 1056 <0
Найдем корни:
Дискриминант:
Корень из (1+4•1056) =
= корень из (1+4224) =
= корень из 4225 = 65
n1 = (-1+65)/2 = 64/2 = 32
n2 = (-1-65)/2 = -66/2 = -33 не подходит, поскольку корень не является натуральным числом.
(n-32)(n+32) <0
n-32<0
n+32>0
n<32
n>-32 - не подходит, поскольку n >0
1 < n < 32
Это значит, что n= 31.
ответ: 31
Проверка:
Если бы n=32, то:
(1+32)•32/2 = 33•32/2 = 33•16 = 528, значит сумма последовательных чисел от 1 до 32 была бы равна 528.
cosx=a
3a²-5a-8=0
D=25+96=121
a1=(5-11)/6=-1⇒cosx=-1⇒x=π+2πn,n∈z
a2=(5+11)/6=2 2/3>1 нет решения
2)8cos^2x-14sinx+1=0
8-8sin²x-14sinx+1=0
sinx=a
8a²+14a-9=0
D=196+288=484
a1=(-14-22)/16=-2,25<-1 нет решения
a2=(-14+22)/16=1/2⇒sinx=1/2⇒x=(-1)^n*π/6+πn,n∈z
3)5sin^2x+14 sinxcosx+8cos^2x=0/cos²x
5tg²x+14tgx+8=0
tgx=a
5a²+14a+8=0
D=196-160=36
a1=(-14-6)/10=-2⇒tgx=-2⇒x=-arctg2+πn,n∈z
a2=(-14+6)/10=-0,8⇒tgx=-0,8⇒x=-arctg0,8+πk,k∈z
4)2tgx-9ctgx +3=0
2tgx-9/tgx+3=0
2tg²x+3tgx-9=0,tgx≠0
tgx=a
2a²+3a-9=0
D=9+72=81
a1=(-3-9)/4=-3⇒tgx=-3⇒x=-arctg3+πn,n∈z
a2=(-3+9)/4=1,5⇒tgx=1,5⇒x=arctg1,5+πk,k∈z
5)sin^2x-5cos^2x=2sin2x
sin²x-5cos²x-4sinxcosx=0/cos²x
tg²x-4tgx-5=0
tgx=a
a²-4a-5=0
a1+a2=4 U a1*a2=-5
a1=-1⇒tgx=-1⇒x=-π/4+πn,n∈z
a2=5⇒tgx=5⇒x=arctg5+πk,k∈z
6)5cos2x+5=8sin2x-6sin^2x
5cos²x-5sin²x+5sin²x+5cos²x-16sinxcosx+6sin²x=0/cos²x
6tg²x-16tgx+10=0
tgx=a
3a²-8a+5=0
D=64-60=4
a1=(8-2)/6=1⇒tgx=1⇒x=π/4+πn,n∈z
a2=(8+2)/6=5/3⇒tgx=5/3⇒x=arctg5/3+πk,k∈z