S V t 1-я лодка х км у + 3 км/ч х/(у +3) ч 2-я лодка 111 - х км у - 3 км/ч (111-х)/(у -3)ч х/(у + 3) = 1,5 ,⇒ х = 1,5(у +3) (111-х)/(у -3) = 1,5,⇒ 111 - х = 1,5(у -3) Сложим эти 2 уравнения почленно получим: 111= 1,5(у +3) + 1,5(у -3) 111 = 1,5у +4,4 + 1,у - 4,5 3у = 111 у = 37(км/ч) - собственная скорость лодки х = 1,5(у +3) = 1,5(37 +3) = 1,5*40 = 60(км) -1-я лодка проплыла до встречи 111 - 60 = 51(км) - проплыла 2-я лодка до встречи.
1-я лодка х км у + 3 км/ч х/(у +3) ч
2-я лодка 111 - х км у - 3 км/ч (111-х)/(у -3)ч
х/(у + 3) = 1,5 ,⇒ х = 1,5(у +3)
(111-х)/(у -3) = 1,5,⇒ 111 - х = 1,5(у -3) Сложим эти 2 уравнения почленно
получим:
111= 1,5(у +3) + 1,5(у -3)
111 = 1,5у +4,4 + 1,у - 4,5
3у = 111
у = 37(км/ч) - собственная скорость лодки
х = 1,5(у +3) = 1,5(37 +3) = 1,5*40 = 60(км) -1-я лодка проплыла до встречи
111 - 60 = 51(км) - проплыла 2-я лодка до встречи.
дифференцированием.
а) ∫(3x^2+4/x+cosx+1)dx=x³+4·ln IxI+sinx +x +C
проверка:
(x³+4·ln IxI+sinx +x +C)'=3x²+4/x +cosx+1 - верно
б) ∫[4x/√(x^2+4)]dx= [ (x^2+4)=t dt=2xdx ] =∫2dt/√t=4√t+c=4√(x^2+4)+c
проверка:
(4√(x^2+4)+c)'=[4(1/2)/√(x^2+4)]·2·x =4x/√(x^2+4) - верно
в) ∫-2xe^xdx =-2 ∫xe^xdx= [ x=u e^xdx=dv ]
[ dx=du e^x=v ]
-2 ∫xe^xdx=-2( u·v- ∫vdu)=-2(x·e^x-∫e^x·dx)=-2(x· e^x-e^x)+c=-2·(e^x)·(x-1)+c
проверка:
(-2·(e^x)·(x-1)+c)'=-2((e^x)'·(x-1)+(e^x)·(x-1)')=-2((e^x)·(x-1)+(e^x))=-2(e^x)·x
=-2x·(e^x) - верно