1)Чтобы наше уравнение имело 2 корня необходимо потребовать следующее: дискриминант уравнения больше нуля(тогда квадратное уравнение имеет 2 корня); p=/=0 (иначе наше уравнение не есть квадратное и, как мы видим, не имеет корней).
D/4 =p^2 -9p d/4 > 0 ==> p(p-9)>0 ==> p>9 или p<0
2)y=3x-5, y'(x) = 3 ==> производная положительна всюду на области вещественных чисел ( lR ) ==> y(x) возрастает на lR
Если без использования производной, то надо просто заметить, что y(x) есть прямая с положительным угловым коэффициентом ==> она всюду возрастает
D/4 =p^2 -9p
d/4 > 0 ==> p(p-9)>0 ==> p>9 или p<0
2)y=3x-5, y'(x) = 3 ==> производная положительна всюду на области вещественных чисел ( lR ) ==> y(x) возрастает на lR
Если без использования производной, то надо просто заметить, что y(x) есть прямая с положительным угловым коэффициентом ==> она всюду возрастает
s = v * t - формула пути ---> t = s : v
Пусть х (км) - расстояние между пунктами А и В (s)
8 + 2 = 10 (км/ч) - скорость катера по течению реки (v1)
8 - 2 = 6 (км/ч) - скорость катера против течения реки (v2)
8 (ч) - время на путь туда и обратно
Уравнение: х/10 + х/6 = 8 (приведём дроби к общ. знам. 30)
3х/30 + 5х/30 = 8 (домножим обе части ур-ния на 30)
3х + 5х = 8 * 30
8х = 240
х = 240 : 8
х = 30
ответ: 30 км - расстояние между пунктами А и В.