В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
sha14558538
sha14558538
11.04.2022 11:49 •  Алгебра

12 задача,очень нужна как можно быстрее,заранее благодарю


12 задача,очень нужна как можно быстрее,заранее благодарю

Показать ответ
Ответ:
Kate905
Kate905
15.04.2023 02:56

Пусть событие A - "выпало 6 очков", а событие B_i - "было произведено i бросков".

Предполагается, что количество бросков определяется случайно, то есть:

P(B_1)=P(B_2)=P(B_3)=P(B_4)=p=\dfrac{1}{4}

В данном случае конкретное числовое значение не столь важно, главное что оно одинаково для всех гипотез.

Для решения задачи понадобится формула Байеса:

P(B_1)\cdot P(A|B_1)=P(A)\cdot P(B_1|A)

Нам нужно найти вероятность того, что был 1 бросок, при условии того, что выпало 6 очков:

P(B_1|A)=\dfrac{P(B_1)\cdot P(A|B_1)}{P(A)}

Распишем полную вероятность:

P(B_1|A)=

=\dfrac{P(B_1)\cdot P(A|B_1)}{P(B_1)P(A|B_1)+P(B_2)P(A|B_2)+P(B_3)P(A|B_3)+P(B_4)P(A|B_4)}=

=\dfrac{p\cdot P(A|B_1)}{p\cdot P(A|B_1)+p\cdot P(A|B_2)+p\cdot P(A|B_3)+p\cdot P(A|B_4)}=

=\dfrac{P(A|B_1)}{P(A|B_1)+P(A|B_2)+P(A|B_3)+P(A|B_4)}

Найдем вероятности выпадения 6 очков при 1, 2, 3, 4 бросках.

При одном броске вероятность выпадения 6 очков, как и любого другого количества очков:

P(A|B_1)=\dfrac{1}{6}

При двух бросках, 6 очков может выпасть в следующих комбинациях:

{1; 5} - 2 вариант

(3; 3) - 1 вариант

{4; 2} - 2 вариант

Благоприятных вариантов - 5. Общее количество вариантов выпадения комбинации на двух кубиках равно 6^2.

P(A|B_2)=\dfrac{5}{6^2}

При трех бросках, 6 очков может выпасть в следующих комбинациях:

{1; 1; 4} - 3 варианта

(1; 2; 3) - 6 вариантов

Благоприятных вариантов - 9.Общее количество вариантов выпадения комбинации на трех кубиках равно 6^3.

P(A|B_3)=\dfrac{9}{6^3}

При четырех бросках, 6 очков может выпасть в следующих комбинациях:

{1; 1; 1; 3} - 4 варианта

(1; 1; 2; 2) - 6 вариантов

Благоприятных вариантов - 10.Общее количество вариантов выпадения комбинации на четырех кубиках равно 6^4.

P(A|B_4)=\dfrac{10}{6^4}

Таким образом, искомая вероятность:

P(B_1|A)=\dfrac{\dfrac{1}{6} }{\dfrac{1}{6}+\dfrac{5}{6^2}+\dfrac{9}{6^3}+\dfrac{10}{6^4}}=\dfrac{6^3}{6^3+5\cdot6^2+9\cdot6+10}=

=\dfrac{216}{216+180+54+10}=\dfrac{216}{460}=\dfrac{54}{115}

ответ: 54/115

0,0(0 оценок)
Ответ:
dvofgisf
dvofgisf
23.03.2021 18:56

Формула движения: S=v*t  

S - расстояние            x и y - скорость             t – время

y - скорость катера.

z - скорость течения (и плота).

y + z - скорость катера по течению.

x - z - скорость катера против течения.

S/(y + z) = 10 - время катера по течению.

S/z = х - время плота по течению (от А до В).

1) По условию задачи уравнение:

(y + z) * 10 = (y - z) * 12

10y +10z =12y- 12z

-2y = -22z

y= 11z

Найти расстояние S:

S=(y + z)*10 = 10y +10z = 11z*10+10z = 110z + 10z = 12z

 Найти время плота:

S/z = х - время плота 

x = 12z/z = 12ч

ответ:12ч

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота