1. Какие из точек принадлежат графику функции у=2х-3?
3)Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение, если левая часть будет равна правой, значит, точка принадлежит графику и наоборот.
А(-1;-5)
-5=2*(-1)-3
-5= -5, принадлежит.
С(-4;7)
7=2*(-4)-3
7≠ -11, не принадлежит
В(0;3)
3=2*0-3
3≠ -3, не принадлежит.
D(2,5; 2)
2=2*2,5-3
2=2, принадлежит.
2. Графиком некоторой функции является ломанная ABC, где А (-6; 5), В (-2; -3), С (4; 3):
а)Постройте график данной функции;
б) Найдите значение функции, если значение аргумента равно -4 и 3; в)Найдите значение аргумента, если значение функции равно -3 и 2.
а)по заданным точкам строим график.
б)согласно графика при х= -4 у=1
согласно графика при х= 3 у=2
в)согласно графика при у= -3 х= -2
согласно графика при у=2 х=3.
3. На рисунке изображен график функции у=f(х).
Пользуясь графиком, найдите:
а) область определения функции;
б) область значений функции;
в)значения х, при котором у=2;
г) значение у, при котором х=3;
д) значение аргумента, при которых значения функции отрицательны;
е) значение аргумента, при которых значения функции положительны.
а)область определения это значения х, при которых построен этот график, от -2 до 7, ось Ох, обозначается х∈[-2, 7]
Скобки квадратные, потому что числа -2 и 7 входят в область определения.
б)область значений это значения у, при которых построен этот график, от -2 до 4,8, ось Оу, обозначение E(у) [-2, 4,8]
Скобки квадратные, потому что числа -2 и 4,8 входят в область значений.
в)у=2
Проводим мысленно прямую через точку у=2, параллельно оси Ох.
Есть три точки пересечения этой прямой с графиком, опускаем вниз перпендикуляры и записываем значения х:
х₁= -1,5 х₂=2,3 х₃=6
г)х=3
Проводим мысленно прямую через точку х=3, параллельно оси Оу. Есть одна точка пересечения с графиком, опускаем перпендикуляр влево, на ось Оу, у=3.
д)найти х, при которых у<0.
У<0 (ниже оси Ох) при х от 6,5 до 7 х∈[6,5, 7] Скобки квадратные, потому что числа 6,5 и 7 входят в область значений.
е)найти х, при которых у> 0.
У>0 (выше оси Ох) при х от -2 до 6,5 х∈[-2, 6,5] Скобки квадратные, потому что числа -2 и 6,5 входят в область значений.
сумма n последовательных нечетных натуральных чисел при n>1
1+3+5+7+...+(2n-1)=n^2
Доказательство методом математической индукции
База индукции
n=2. 1+3=2^2
Гипотеза индукции
Пусть для n=k утверждение выполняется, т.е. выполняется
1+3+5+7+...+(2k-1)=k^2
Индукционный переход. Докажем, что тогда выполняется утверждение и для n=k+1, т.е, что выполняется
1+3+5+7+...+(2k-1)+(2K+1)=(k+1)^2
1+3+5+7+...+(2k-1)+(2K+1)=используем гипотезу МИ=k^2+(2k+1)=k^2+2k+1=используем формлу квадрату двучлена=(k+1)^2, что и требовалось доказать.
По методому математической индукции формула справедлива.
Число n^2 при n>1 zвляется составным, оно делится на 1,n,n^2.
А значит сумма n последовательных нечетных натуральных чисел при n>1 является составным числом. Доказано
Объяснение:
Объяснение:
1. Какие из точек принадлежат графику функции у=2х-3?
3)Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение, если левая часть будет равна правой, значит, точка принадлежит графику и наоборот.
А(-1;-5)
-5=2*(-1)-3
-5= -5, принадлежит.
С(-4;7)
7=2*(-4)-3
7≠ -11, не принадлежит
В(0;3)
3=2*0-3
3≠ -3, не принадлежит.
D(2,5; 2)
2=2*2,5-3
2=2, принадлежит.
2. Графиком некоторой функции является ломанная ABC, где А (-6; 5), В (-2; -3), С (4; 3):
а)Постройте график данной функции;
б) Найдите значение функции, если значение аргумента равно -4 и 3; в)Найдите значение аргумента, если значение функции равно -3 и 2.
а)по заданным точкам строим график.
б)согласно графика при х= -4 у=1
согласно графика при х= 3 у=2
в)согласно графика при у= -3 х= -2
согласно графика при у=2 х=3.
3. На рисунке изображен график функции у=f(х).
Пользуясь графиком, найдите:
а) область определения функции;
б) область значений функции;
в)значения х, при котором у=2;
г) значение у, при котором х=3;
д) значение аргумента, при которых значения функции отрицательны;
е) значение аргумента, при которых значения функции положительны.
а)область определения это значения х, при которых построен этот график, от -2 до 7, ось Ох, обозначается х∈[-2, 7]
Скобки квадратные, потому что числа -2 и 7 входят в область определения.
б)область значений это значения у, при которых построен этот график, от -2 до 4,8, ось Оу, обозначение E(у) [-2, 4,8]
Скобки квадратные, потому что числа -2 и 4,8 входят в область значений.
в)у=2
Проводим мысленно прямую через точку у=2, параллельно оси Ох.
Есть три точки пересечения этой прямой с графиком, опускаем вниз перпендикуляры и записываем значения х:
х₁= -1,5 х₂=2,3 х₃=6
г)х=3
Проводим мысленно прямую через точку х=3, параллельно оси Оу. Есть одна точка пересечения с графиком, опускаем перпендикуляр влево, на ось Оу, у=3.
д)найти х, при которых у<0.
У<0 (ниже оси Ох) при х от 6,5 до 7 х∈[6,5, 7] Скобки квадратные, потому что числа 6,5 и 7 входят в область значений.
е)найти х, при которых у> 0.
У>0 (выше оси Ох) при х от -2 до 6,5 х∈[-2, 6,5] Скобки квадратные, потому что числа -2 и 6,5 входят в область значений.