16.19. Не выполняя построений, установите, верно ли приведённое высказывание: осноор а) график функции у — 3х + 3 проходит через точку (0; 3); б) графики функций у = 2х + Зиу - - 3x — 2 пересекаются в точках с координатами (-3; 6) и (3; -6).
Вероятность того, что ученик не даст ни одного неверного ответа, равна произведению вероятностей верного ответа в каждом вопросе. В каждом вопросе два варианта, шанс ответить верно - 50%. 0,5*0,5*0,5*0,5*0,5=(1/2)^5=1/32=0,03125=3,125%. Это шанс того, что ученик не даст ни одного неверного ответа. Нам же нужно найти обратную вероятность - шанс того, что хотя бы один неверный ответ всё же попадется. Очевидно, что это все остальные случаи. 1- (1/32)=31/32, оно же 1-0,03125=0,96875=96,875%. ответ: 31/32, или 96,875%.
0,5*0,5*0,5*0,5*0,5=(1/2)^5=1/32=0,03125=3,125%.
Это шанс того, что ученик не даст ни одного неверного ответа. Нам же нужно найти обратную вероятность - шанс того, что хотя бы один неверный ответ всё же попадется. Очевидно, что это все остальные случаи.
1- (1/32)=31/32, оно же 1-0,03125=0,96875=96,875%.
ответ: 31/32, или 96,875%.
Объяснение:
Произведение делится на 10, если в нем присутствует хотя бы одно число, кратное 5 и хотя бы одно четное.
Или просто число, кратное 10 - 10, 20 или 30.
Чтобы произведение не делилось на 10, достаточно удалить все числа, которые делятся на 5.
5, 10, 15, 20, 25, 30.
Всего 6 чисел, поэтому, если оба будут вычёркивать только эти числа, то выиграет тот, кто ходит вторым - Айаал.
Пусть хочет выиграть Алгыс.
Тогда, когда вычеркнули 4 из 6 чисел, в том числе круглые 10, 20 и 30, то Алгыс начнет вычёркивать четные числа.
Чётных чисел осталось 13: 2,4,6,8,12,14,16,18,22,24,26,28,32.
Если Алгыс вычеркнет первое, то он же вычеркнет и последнее.
После этого останутся нечётные числа, и произведение не будет делиться на 10.
ответ. Алгыс может выиграть, если сначала вычеркнут три круглых числа и одно, кратное 5, а потом все четные.
В противном случае выиграет Айаал.