Номер 1: 3^-3=-27 ответ Б Так как степень отрицательная, знак не поменяется. То есть минус останется минусом -3*(-3)*(-3)=-27
Номер2: Х^-5:х^3= х^-8
Когда делишь надо вычитать степени. Основание остаётся одинаковым, а степень -5-3= -8
Номер3: А) приводишь все к одинаковому основанию т.е 2: 8 это 2^3 у тебя ещё 8 в квадрате=> (2^3)^2 Раскрывая скобку надо 3 умножить на 2. Значит 2 в 6 степени
2^-14 такой и остаётся
4 это 2 в квадрате, там ещё -6 степень => (2^2)^-6 умножаешь степени= 2^-12
2^6*2^-14 ————— 2^-12
В знаменателе когда 2 числа умножаешь само основание 2 не изменяется, а степени надо прибавить т.е 6+(-14)= -8
2^-8 ——- 2^-12
Основание остаётся, степени вычитаются -8-(-12)=-8+12= 4
ответ: 2^4=16
Б) 9^2*3^-10 —————— 27^-3
Приводим к одинаковому основанию 3
9 это 3 в квадрате, там ещё и 2 степень а значит 3^4 3^-10 не трогаем 27^-3 это (3^3)-3= 3^-9 3^4*3^-10 ————— 3^-9
В знаменателе степени прибавляем 4+(-10)= -6
3^-6 –—— = 3^3 ( степени вычитаешь) 3^-9
3 в кубе это 27. ответ 27
Номер5: За скобки выносим б^3 В скобке остаётся b^3 (1-b^2)
Умножить уравнение (все части) на (х-2), чтобы избавиться от дробного выражения:
2х² - (3х + 2) = х(х - 2)
Раскрыть скобки:
2х² - 3х - 2 = х² - 2х
Привести подобные члены:
2х² - 3х - 2 - х² + 2х = 0
х² - х - 2 = 0, квадратное уравнение, ищем корни:
D=b²-4ac =1 + 8 = 9 √D= 3
х₁=(-b-√D)/2a
х₁=(1 - 3)/2
х₁= -2/2
х₁= -1;
х₂=(-b+√D)/2a
х₂=(1 + 3)/2
х₂=4/2
х₂=2.
Так как х в знаменателе, по ОДЗ х не может быть равен 2, так как в этом случае знаменатель будет равен нулю, а дробь не будет иметь смысла. Значит, решение уравнения только х= -1.
Так как степень отрицательная, знак не поменяется. То есть минус останется минусом -3*(-3)*(-3)=-27
Номер2:
Х^-5:х^3= х^-8
Когда делишь надо вычитать степени. Основание остаётся одинаковым, а степень -5-3= -8
Номер3:
А) приводишь все к одинаковому основанию т.е 2:
8 это 2^3 у тебя ещё 8 в квадрате=> (2^3)^2
Раскрывая скобку надо 3 умножить на 2. Значит 2 в 6 степени
2^-14 такой и остаётся
4 это 2 в квадрате, там ещё -6 степень => (2^2)^-6 умножаешь степени= 2^-12
2^6*2^-14
—————
2^-12
В знаменателе когда 2 числа умножаешь само основание 2 не изменяется, а степени надо прибавить т.е 6+(-14)= -8
2^-8
——-
2^-12
Основание остаётся, степени вычитаются -8-(-12)=-8+12= 4
ответ: 2^4=16
Б) 9^2*3^-10
——————
27^-3
Приводим к одинаковому основанию 3
9 это 3 в квадрате, там ещё и 2 степень а значит 3^4
3^-10 не трогаем
27^-3 это (3^3)-3= 3^-9
3^4*3^-10
—————
3^-9
В знаменателе степени прибавляем 4+(-10)= -6
3^-6
–—— = 3^3 ( степени вычитаешь)
3^-9
3 в кубе это 27. ответ 27
Номер5:
За скобки выносим б^3
В скобке остаётся b^3 (1-b^2)
В фотке формулы обвела, которыми пользовалась
В решении.
Объяснение:
Решить уравнение:
2x²/(x-2) + (3x+2)/(2-x) = x
Сначала преобразовать знаменатель второй дроби, чтобы найти общий знаменатель:
(3x+2)/(2-x) = (3х+2)/ - (х-2) = - (3х+2)/(х-2), тогда уравнение примет вид:
2x²/(x-2) - (3x+2)/(х-2) = x
Умножить уравнение (все части) на (х-2), чтобы избавиться от дробного выражения:
2х² - (3х + 2) = х(х - 2)
Раскрыть скобки:
2х² - 3х - 2 = х² - 2х
Привести подобные члены:
2х² - 3х - 2 - х² + 2х = 0
х² - х - 2 = 0, квадратное уравнение, ищем корни:
D=b²-4ac =1 + 8 = 9 √D= 3
х₁=(-b-√D)/2a
х₁=(1 - 3)/2
х₁= -2/2
х₁= -1;
х₂=(-b+√D)/2a
х₂=(1 + 3)/2
х₂=4/2
х₂=2.
Так как х в знаменателе, по ОДЗ х не может быть равен 2, так как в этом случае знаменатель будет равен нулю, а дробь не будет иметь смысла. Значит, решение уравнения только х= -1.