Не очень понятно
Если под корнем (х-3), то
x-2-√(х-3)=0
х-2=√(х-3)
Возводим в квадрат обе части уравнения:
(х-2)²=(√(х-3))²
х²-4х+4=х-3
х²-5х+7=0
Найдем дискриминант квадратного уравнения:
D = b² - 4ac = (-5)² - 4·1·7 = 25 - 28 = -3
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
Если под корнем х, то
x-2-√x-3=0
х-5=√х
(х-5)²=(√х)²
х²-10х+25=х
х²-11х+25=0
D = b² - 4ac = (-11)² - 4·1·25 = 121 - 100 = 21
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = ≈ 3.2087
x2 = ≈ 7.7913
Как-то так, удачи))
Не очень понятно
Если под корнем (х-3), то
x-2-√(х-3)=0
х-2=√(х-3)
Возводим в квадрат обе части уравнения:
(х-2)²=(√(х-3))²
х²-4х+4=х-3
х²-5х+7=0
Найдем дискриминант квадратного уравнения:
D = b² - 4ac = (-5)² - 4·1·7 = 25 - 28 = -3
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
Если под корнем х, то
x-2-√x-3=0
х-5=√х
Возводим в квадрат обе части уравнения:
(х-5)²=(√х)²
х²-10х+25=х
х²-11х+25=0
Найдем дискриминант квадратного уравнения:
D = b² - 4ac = (-11)² - 4·1·25 = 121 - 100 = 21
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = ≈ 3.2087
x2 = ≈ 7.7913
Как-то так, удачи))
xy=-2
x-4y=6
Решаем методом подстановки. Выражаем из второго уравнения х
(6+4y)y=-2
x=6+4y
Выписываем первое уравнение системы и решаем его.
(6+4y)y=-2
6y+4y^2=-2|/2
3y+2y^2+1=0
2y^2+3y+1=0
D=3^2-4*2=1
√1=1
y_1=(-3+1)/4=-0.5
y_2=(-3-1)/4=-1
Подставляем у и находим х
x_1=6+(-4*0.5)=4
x_2=6+4*(-1)=2
ответ: (4;-0.5) U (2;-1)
б)
(x+4)^2-y=0
y-x=6
Выражаем из второго у , подставляем и решаем.
(x+4)^2 -(6+x)=0
y=6+x
Решаем первое уравнение системы:
(x+4)^2 - 6 - x = 0
x^2+8x+16-6-x=0
x^2+7x+10=0
D=49-40=9
√9=3
x_1=(-7+3)/2=-2
x_2=(-7-3)/2=-5
Подставляем х и находим у
y_1=6+(-2)=4
y_2=6+(-5)=1
ответ: (-2;4) U (-5;1)