Может быть правильное условие звучит так: Двое рабочих изготовили по одинаковому количеству деталей. Первый выполнил свою работу за 5ч., а второй за 4 ч., так как изготовлял на 12 деталей в час больше первого.Сколько деталей в час изготовлял каждый рабочий?
Тогда задача решается следующим образом.
Пусть Х деталей в час изготовлял первый рабочий, тогда второй рабочий изготовлял в час (х+12) деталей. Всего они изготовили одинаковое количество деталей: первый - 5х, а второй 4(х+12). Составим и решим уравнение:
5х=4(х+12)
5х=4х+48
5х-4х=48
х=48
48+12=60
ответ: первый рабочий изготовлял в час 48 деталей, а второй - 60 деталей.
t1(пароход затратил по течению) 17/(х+32).
t2(пароход затратил против теч) 75/(32-х)
По условию t2-t1=2(ч)
Составим уравнение:
75/(32-х) -17/(х+32)=2
75*(32+x)-17*(32-x)=2*(1024-x^2)
2400+75*x-17*(32-x)-2*(1024-x^2)=0
2400+75*x-(544-17*x)-2*(1024-x^2)=0
2400+75*x-544+17*x-2*(1024-x^2)=0
1856+75*x+17*x-2*(1024-x^2)=0
1856+92*x-2*(1024-x^2)=0
1856+92*x-(2048-2x^2)=0
1856+92*x-2048+2x^2=0
-192+92*x+2x^2=0
D=92^2-4*2*(-192)=10000
x1=(√10000-92)/(2*2)=2 км/час скорость реки
Может быть правильное условие звучит так: Двое рабочих изготовили по одинаковому количеству деталей. Первый выполнил свою работу за 5ч., а второй за 4 ч., так как изготовлял на 12 деталей в час больше первого.Сколько деталей в час изготовлял каждый рабочий?
Тогда задача решается следующим образом.
Пусть Х деталей в час изготовлял первый рабочий, тогда второй рабочий изготовлял в час (х+12) деталей. Всего они изготовили одинаковое количество деталей: первый - 5х, а второй 4(х+12). Составим и решим уравнение:
5х=4(х+12)
5х=4х+48
5х-4х=48
х=48
48+12=60
ответ: первый рабочий изготовлял в час 48 деталей, а второй - 60 деталей.
Удачи!