Дано уравнение (х - а) (х2-10х + 24) = 0
Определите значения, с которыми уравнение имеет 3 различных корня, из которых они образуют арифметическую прогрессию!
Введите возможные значения для в порядке возрастания:
Дополнительный во Каковы корни квадратного уравнения x2−10x + 24 = 0 (начиная с наименьшего)?
х1 =
х2 =
Отправить ответ!
х=0 тогда у =-3·0+4= 4 (0;4)-первая точка
у=-2 -2=-3х+4
-3х=-2-4
-3х--6
х=-6÷(-3)
х=2
(2;-2) вторая точка
отмечаеш в декартовой системе координат эти точки и через них проводиш прямую это и будет график функции
если координати точки удовлетворяют уравнению -значит точка пренадлежит графику а это значит что график проходит через точку А
Подставим координаты точку и проверим
-130=-3·42+4
-130=-132+4
-130 ≠-128 это значит что график не проходит через точку А(42;-130)
Из равенства треугольников следует равенство углов ACO=BCO. Эти два угла равны, а в сумме они образуют угол C, который равен 18 градусам. Значит угол ACO=BCO=9градусов. Оставшиеся углы AOC и BOC будут равны 180-90-9=81градусу. Угол АОB состоит из углов: AOC и BOC, которые равны между собой, а их значение мы вычислили выше. Значит угол AOB=2*81=162градуса