1Все перечисленные числа: 9, 24, 78, 136, 4071 относятся к ... 1натуральным числам 2иррациональным числам 3целым числам 4действительным числам 5рациональным числам 2Каждое рациональное число может быть представлено в виде ... 1десятичной дроби 2бесконечной десятичной непериодической дроби 3бесконечной десятичной периодической дроби 4в виде дроби m/n, где m- целое число, а n- натуральное 3 Число 0,5(3) можно назвать ... 1бесконечной десятичной непериодической дробью 2бесконечной десятичной периодической дробью 3иррациональным числом 4рациональным числом 4файл 5 файл
54мин=54/60ч=9/10ч=0,9ч х-время быстрой группы на весь путь х+0,9-время медленной группы на весь путь 18/2=9км/ч- совместная скорость 18/х+18/(х+0,9)=9 18(х+0,9)+18х=9х(х+0,9) 18х+16,2+18х=9х²+8,1х 36х+16,2=9х²+8,1х 9х²+8,1х-36х-16,2=0 9х²-27,9х-16,2=0 разделим на 9 х²-3,1х-1,8=0 d = (-3.1)2 - 4·1·(-1.8) = 9.61 + 7.2 = 16.81х₁=( 3.1 - √16.81)/(2*1) = (3.1 - 4.1)/2 = -1/2 = -0.5- не подходитх₂=(3.1 +√16.81)/(2*1) = (3.1 + 4.1)/2 =7,2/2 = 3,6 18/3,6=180/36=20/4=5км/ч-скорость быстрой группы 9-5=4км/ч- скорость медленной группы
Дано уравнение cosx=1/(1- tgx).
сosx*(1 - tgx) = 1.
сosx - сosx*tgx = 1.
Заменим tgx = sinx/cosx,
сosx - сosx*( sinx/cosx) = 1.
cosx – sinx = 1.
Заменим sinx = √(1 – cos²x)
cosx - √(1 – cos²x) = 1.
Перенесём корень вправо, а 1 влево и возведём обе части в квадрат.
cos²x – 2cosx + 1 = 1 – cos²x,
2 cos²x – 2cosx = 0,
2cosx(cosx - 1) = 0.
Имеем 2 решения: cosx = 0 и cosx = 1.
Находим значения х:
x = arc cos 0 отбрасываем, так как при этом функция тангенса не имеет определения.
x = arc cos(1) = 2πn, n ∈ Z.
ответ: в заданном промежутке имеется 3 корня уравнения
-2π, 0, 2π.
.