Руслану нужно решить 420 задач. Ежедневно он решает на одно и то же количество задач больше по сравнению с предыдущим днем. Известно, что за перый день Руслан решил 13 задач. Определите, сколько задач решил Руслан в последний день, если со всеми задачами он справился за 12 дней.
Решение: Так как Руслан ежедневно решает на одно и тоже количество задач больше по сравнению с предыдущим днем, то последовательность решенных задач является арифметической прогрессией. Поэтому можно записать, что первый член арифметической прогрессии равен 13 или a1=13. Последний член равен an. Сумма прогрессии равна 420 или Sn = 420. Количество членов прогрессии равно количеству дней для решения n=12. Запишем формулу для определения суммы арифметической прогрессии Sn = (a1+an)n/2 Выразим из формулы an an = 2Sn/n - a1 Подставим известные значения an = 2*420/12 - 13 = 57 Поэтому в последний день Руслан решил 57 задач. ответ: 57
an =a1+(n-1)d или d =(an-a1)/(n-1) =(57-13)/(12-1) =44/11=4 Запишем эту последовательность 13;17;21;25;29;33;37;41;45;49;53;57 Сумма этих чисел равна 13+17+21+25+29+33+37+41+45+49+53+57= 420
Решение. Пусть x (км/ч) - собственная скорость теплохода, т.е. скорость теплохода в неподвижной воде. Тогда когда теплоход плывет по течению, то его скорость v1=(x+2) Пусть S(км) - искомое растояние между пристанями. Из условия получим: S=v1*t1=4(x+2)(1) где t1=4 ч - по условию Когда же теплоход движется против течения, то его скорость v2=(x-2) Из условия получим: S=v2*t2=5(x-2)(2) где t2=5 ч - по условию Левые части равенств (1) и (2) равны, поэтому равны их правые части: 4(x+2)=5(x-2), раскроем скобки, приведем подобные: 5x-4x=8+10 => x=18 км/ч (3) Теперь мы можем найти S. Что мы можем сделать как по формуле (1), так по формуле (2). Из (2) и (3) имеем: S=5(18-2)=5*16=80 км
Решение:
Так как Руслан ежедневно решает на одно и тоже количество задач больше по сравнению с предыдущим днем, то последовательность решенных задач является арифметической прогрессией. Поэтому можно записать, что первый член арифметической прогрессии равен 13 или a1=13. Последний член равен an.
Сумма прогрессии равна 420 или Sn = 420. Количество членов прогрессии равно количеству дней для решения n=12.
Запишем формулу для определения суммы арифметической прогрессии
Sn = (a1+an)n/2
Выразим из формулы an
an = 2Sn/n - a1
Подставим известные значения
an = 2*420/12 - 13 = 57
Поэтому в последний день Руслан решил 57 задач.
ответ: 57
an =a1+(n-1)d или d =(an-a1)/(n-1) =(57-13)/(12-1) =44/11=4
Запишем эту последовательность
13;17;21;25;29;33;37;41;45;49;53;57
Сумма этих чисел равна
13+17+21+25+29+33+37+41+45+49+53+57= 420
Пусть S(км) - искомое растояние между пристанями.
Из условия получим: S=v1*t1=4(x+2)(1)
где t1=4 ч - по условию
Когда же теплоход движется против течения, то его скорость v2=(x-2)
Из условия получим: S=v2*t2=5(x-2)(2)
где t2=5 ч - по условию
Левые части равенств (1) и (2) равны, поэтому равны их правые части: 4(x+2)=5(x-2), раскроем скобки, приведем подобные: 5x-4x=8+10 => x=18 км/ч (3)
Теперь мы можем найти S. Что мы можем сделать как по формуле (1), так по формуле (2).
Из (2) и (3) имеем: S=5(18-2)=5*16=80 км