Такие уравнения решаются по одному приёму: надо снять знак модуля. При этом учитывать, что |x| = x при х ≥ 0 |x| = -x при х <0 Придётся определять какое число стоит под знаком модуля, чтобы потом этот самый знак снять. каждое подмодульное выражение = 0 при х = -2, 3, 2 Поставим эти числа на координатной прямой -∞ -2 2 3 +∞ Получили 4 промежутка. на каждом отдельно будет уравнение иметь свой вид а) (-∞; -2) -(х+2) +(х-3) +(х-2) = 3 -х-2+х-3+х-2 = 3 х = 10 ( в указанный промежуток не входит) б)[-2; 2) х+2 +х -3 +х-2 = 3 3х = 6 х = 2 ( в указанный промежуток не входит) в) [2; 3) х +2 +х -3 -х -2 = 3 х =6 ( в указанный промежуток не входит) г)[3; +∞) х +2 -х+3 -х+2 = 3 -х = -4 х = 4 ( в указанный промежуток входит) ответ: 4
400 : 34 = 12 (кг) фруктов купили
Если нужно узнать сколько груш и сколько яблок:
За Х - количество килограммов яблок,
за У - количество килограммов груш
Решаем :
30х + 38у = 400
х + у = 12
из второго уравнения:
х = 12 - у
подставляем в 1 уравнение :
30 * (12 - у) + 38у = 400
360 - 30у + 38у = 400
8у = 40
у = 5 (кг) купили груш
подставляем во 2 уравнение:
х + 5 = 12
х = 12 - 5
х = 7 (кг) купили яблок
Проверка
(30 * 7) + (38 * 5) = 210 + 190 = 400 р - заплатили
ответ: 400 рублей
|x| = -x при х <0
Придётся определять какое число стоит под знаком модуля, чтобы потом этот самый знак снять.
каждое подмодульное выражение = 0 при х = -2, 3, 2
Поставим эти числа на координатной прямой
-∞ -2 2 3 +∞
Получили 4 промежутка. на каждом отдельно будет уравнение иметь свой вид
а) (-∞; -2)
-(х+2) +(х-3) +(х-2) = 3
-х-2+х-3+х-2 = 3
х = 10 ( в указанный промежуток не входит)
б)[-2; 2)
х+2 +х -3 +х-2 = 3
3х = 6
х = 2 ( в указанный промежуток не входит)
в) [2; 3)
х +2 +х -3 -х -2 = 3
х =6 ( в указанный промежуток не входит)
г)[3; +∞)
х +2 -х+3 -х+2 = 3
-х = -4
х = 4 ( в указанный промежуток входит)
ответ: 4