Числа которые делятся на 7, не превосходящие 200 это числа 7, 14, ..., 196 (первое 7*1=7 - в виду что натуральные, кратные 7) (последнее вычисляем по неполному частному 200=7*28+4, 7*28=196)
они образуют арифметическую прогрессию с первым членом 7, разностью 7, последним членом 196
среди них те которые делятся на 11 это те натуральные числа которые делятся на 11*7=77 (так как 11 и 7 взаимно просты) аналогично для 77 - получаем 77, ..., 154 (первое 77=77*1) (последнее 200=77*2+2, 77*2=154) всего их
значит натуральных числе, не превосходящих 200, которые делятся на 7, но не делятся на 11 (иначе говоря не делящихся на 77) будет 28-2=26 ответ: 26 чисел
x-x1 y-y1
= x1=-1 x2=3 y1=8 y2=-4
x2-x1 y2-y1
x-(-1) y-8 x+1 y-8 x+1 y-8
= ⇔ = или =
3-(-1) -4-8 4 -12 1 -3
-3(x+1)=y-8 или y=-3x+5
y=kx+b
A(-1;8) ∈ y=kx+b ⇔ 8=k(-1)+b -k+b=8
и B(3;-4)∈ y=kx+b ⇔-4=k(3)+b ⇔ 3k+b=-4 ⇔4k=-12 k=-3
b=8+k=5
y=-3x+5
проверка
A(-1;8) и B(3;-4)∈ y=kx+b y=-3x+5
A(-1;8) 8=-3(-1)+5 верно
B(3;-4) -4=-3(3)+5 верно
(первое 7*1=7 - в виду что натуральные, кратные 7)
(последнее вычисляем по неполному частному 200=7*28+4, 7*28=196)
они образуют арифметическую прогрессию с первым членом 7, разностью 7, последним членом 196
среди них те которые делятся на 11 это те натуральные числа которые делятся на 11*7=77 (так как 11 и 7 взаимно просты)
аналогично для 77 - получаем 77, ..., 154
(первое 77=77*1)
(последнее 200=77*2+2, 77*2=154)
всего их
значит натуральных числе, не превосходящих 200, которые делятся на 7, но не делятся на 11 (иначе говоря не делящихся на 77) будет 28-2=26
ответ: 26 чисел