№ 2. Крива MN графік деякої функції. Знайдіть за графіком: а) значення функції, що відповідають значенням аргументу –2; -1; 0; 1; 5; б) при яких значеннях аргументу функція
дорівнює 0? в) при яких значеннях аргументу функція набуває додатних значень? від'ємних
значень? г) яка область визначення функції? яка область значень функції?
Для начала переведём все скорости в метры за минуту - так удобнее.
6 км/ч = 100 м/мин
7,2 км/ч = 120 м/мин
Пешеходов обозначим (1), (2) и (3)
Теперь рассмотрим временную линию.
Момент "ноль" - все сидят на старте, пьют чай.
Момент "один" - через 30 минут м/мин * 30 мин = 3000 м, (2): 120 м/мин * 30 мин = 3600 м, (3): стартует.
Момент "два" - через какое-то время, обозначим его х минут, когда (3) догнал (1). К этому моменту м/мин *(30+х) мин = 100(30+х) м, (2): 120 м/мин * (30+х) мин = 120(30+х) м, (3): 100(30+х) м - столько же, сколько (1)
Момент "три" - через 40 мин после момента "два", когда (3) догнал (2). К этому моменту м/мин *(70+х) мин = 100(70+х) м, (2): 120 м/мин * (70+х) мин = 120(70+х) м, (3): 120(70+х) м - столько же, сколько (2)
Теперь запишем скорость (3) на участке "один"-"два". Он х) м за х минут, то есть его скорость равна
На участке "два"-"три" х) м за (х+40) минут, то есть его скорость равна
Поскольку скорость его постоянна, можем записать равенство:
Решаем уравнение:
100(30+x)(х+40)=120(70+x)х
100(30х+х²+1200+40х)=120(70х+x²)
7000х+100х²+120000=8400х+120x²
20x²+1400х-120000=0 (сокращаем на 20)
x²+70х-6000=0
Д=4900+24000=28900
х₁=(-70+170)/2=50
х₂=(-70-170)/2=-120 (не подходит, время не может быть отрицательным)
Значит, (3) догнал (1) через 50 минут. Подставим это значение и найдём скорость (3):
160 м/мин = 9,6 км/час
ответ: скорость третьего туриста 9,6 км/час
Если действительное число не является рациональным, то оно иррациональное число. Десятичные дроби, выражающие иррациональные числа бесконечны и не периодичны. Множество иррациональных чисел обычно обозначается заглавной латинской буквой I.
Действительное число называется алгебраическим, если оно является корнем некоторого многочлена (ненулевой степени) с рациональными коэффициентами. Любое неалгебраическое число называется трансцендентным.