2. Найдите множество точек координатной плоскости, которое задано системой неравенств:
х2 – 4х + у2 – 5 ≤ 0,
у + х2 – 3 ≤ 0.
3. Решите систему уравнений:
х2 + у = 10,
3х -у = = -10.
x=5-y
(5-y)^2-3y+15=0
25+y^2-10y-3y+15=0
y^2-13y+40=0
y=1/2(13+-3)
y1=8 x1=-3
y2=5 x2=0
4. Решите задачу с системы уравнений.
Найдите числа, сумма которых равна 20, а произведение – 75. х+у=20
ху=75
х+75/х=20
х^2+75-20x/x=0
x^2-20x+75=0
D=400-300=100
x=20+10/2 или x=20-10/2
x=15 x=5
15у=75 5у=75
у=5 у=15
ответ: числа 5 и 15
5. Из цифр 4, 1, 5, 3, 6, 9 составлены всевозможные пятизначные числа без повторения цифр. Сколько среди этих чисел таких, которые кратны 2? Фиксируем цифру 4 на последнее место. Тогда на первое место можно использовать 5 цифр, на второе место - оставшиеся 4 цифры, на третье место - 3 цифры, на четвертое место - оставшиеся 2 цифры. По правилу произведения, таких четных чисел, в котором на последнем месте цифра 4 , равно 5*4*3*2*1 = 120Аналогично, фиксируя цифру 6 на последнее место, таких тоже будет 120. По правилу сложения, 120+120 = 240 чисел, делящиеся на 2.
6. В кружке по спортивной стрельбе 16 мальчиков и 6 девочек. Сколькими можно выбрать из них четырех мальчиков и двух девочек для участия в соревнованиях?7. Сколько четырехзначных чисел, в которых нет одинаковых цифр, можно составить из цифр: 0, 2, 4,6,8Так как на первое место 0 нельзя использовать, то берем любую цифру из 4, на второе место выбираем 4 цифры (0 используется), на третье место - оставшиеся 3 цифры, на третье место - 2 цифры. По правилу произведения, всего четырехзначных чисел 4*4*3*2=96
2. Найдите множество точек координатной плоскости, которое задано системой неравенств:
х2 – 4х + у2 – 5 ≤ 0,
у + х2 – 3 ≤ 0.
3. Решите систему уравнений:
х2 + у = 10,
3х -у = = -10.
x=5-y
(5-y)^2-3y+15=0
25+y^2-10y-3y+15=0
y^2-13y+40=0
y=1/2(13+-3)
y1=8 x1=-3
y2=5 x2=0
4. Решите задачу с системы уравнений.
Найдите числа, сумма которых равна 20, а произведение – 75. х+у=20
ху=75
х+75/х=20
х^2+75-20x/x=0
x^2-20x+75=0
D=400-300=100
x=20+10/2 или x=20-10/2
x=15 x=5
15у=75 5у=75
у=5 у=15
ответ: числа 5 и 15
5. Из цифр 4, 1, 5, 3, 6, 9 составлены всевозможные пятизначные числа без повторения цифр. Сколько среди этих чисел таких, которые кратны 2? Фиксируем цифру 4 на последнее место. Тогда на первое место можно использовать 5 цифр, на второе место - оставшиеся 4 цифры, на третье место - 3 цифры, на четвертое место - оставшиеся 2 цифры. По правилу произведения, таких четных чисел, в котором на последнем месте цифра 4 , равно 5*4*3*2*1 = 120Аналогично, фиксируя цифру 6 на последнее место, таких тоже будет 120. По правилу сложения, 120+120 = 240 чисел, делящиеся на 2.
6. В кружке по спортивной стрельбе 16 мальчиков и 6 девочек. Сколькими можно выбрать из них четырех мальчиков и двух девочек для участия в соревнованиях?7. Сколько четырехзначных чисел, в которых нет одинаковых цифр, можно составить из цифр: 0, 2, 4,6,8Так как на первое место 0 нельзя использовать, то берем любую цифру из 4, на второе место выбираем 4 цифры (0 используется), на третье место - оставшиеся 3 цифры, на третье место - 2 цифры. По правилу произведения, всего четырехзначных чисел 4*4*3*2=96
Объяснение:
вот,всем удачи
Найдите координаты точек, в которых касательные к графику функции
y = (x + 1)/(x - 3), имеющие угловой коэффициент k = - 1, пересекают ось абсцисс.
Найдем координаты точек, в которых касательные к графику имеют угловой коэффициент угловой коэффициент k = - 1.
k = y` = [(x + 1)/(x - 3)]` = [x - 3 - (x + 1)] / (x - 3)² =
= - 4 /(x - 3)²
y` = - 1
- 4 / (x - 3)² = - 1
x² - 6x + 9 = 4
x² - 6x + 5 = 0
x₁ = 1
x₂ = 5
y₁ = - 1
y₂ = 3
Запишем уравнения этих касательных:
1) y = - (x - 1) - 1
2) y = - (x - 5) + 3
Касательные пересекают ось абсцисс, значит, y = 0
Таким образом, если у = 0, то
1) y = - (x - 1) - 1
- (x - 1) - 1 = 0
x = 0
2) y = - (x - 5) + 3
- (x - 5) + 3 = 0
x = 8
ответ: (0; 0) ; (8; 0)
2) y = √x y₀ = 2
y = y(x₀) + y`(x₀)*(x - x₀) - уравнение касательной
если у₀ = 2, то
2 = √x
x₀ = 4 абсцисса точки
а) y(x₀) = y(4) = √4 = 2
б) y` = 1/2√x
y` = 1/2√4 = 1/(2*2) = 1/4
в) y = 2 + (1/4)*(x - 4)
y = 2 + (1/4)*x - (1/4)*4
y = 2 + (1/4)*x - 1
y = (1/4)*x + 1 - уравнение касательной в точке