1. Выполним тождественное преобразование выражения и приведем его к виду квадратного уравнения:
(x - 1)(x + 4) = 0;
x² - 4x - x - 4 = 0;
x² - 5x - 4 = 0;
Выпишем коэффициенты:
старший коэффициент a = 1;
второй коэффициент b = - 5;
свободный член c = - 4.
2. Выполним тождественное преобразование выражения и приведем его к виду квадратного уравнения:
12 - 6(х - 3) - 7х = (х - 2)(х + 3);
12 - 6х + 18 - 7х = х² + 3х - 2х - 6;
- х² - 3х + 2х + 6 + 12 - 6х + 18 - 7х = 0;
- х² - 14х + 36 = 0;
х² + 14х - 36 = 0;
второй коэффициент b = 14;
свободный член c = - 36.
Объяснение:
Обозначим недостающее число через x.
а) Среднее арифметическое данного ряда = 24:
(3+8+15+30+x+24)/6 = 24; 80 + x = 24*6;
80 + х = 144
х = 144 - 80
х = 64
Пропущено число 64.
б) Размах ряда - это разность между наибольшим и наименьшим значениями ряда.
Если в ряду содержатся только положительные числа, то пропущено наибольшее число, оно равно :
x-3 = 52;
x= 55.
Если в ряду могут быть отрицательные числа, то пропущено наименьшее число, оно равно 12:
64-x=52;
x = 64-52 = 12.
в) Мода ряда - это число, которое встречается наиболее часто. Так как мода = 8, то пропущено число 8.
1. Выполним тождественное преобразование выражения и приведем его к виду квадратного уравнения:
(x - 1)(x + 4) = 0;
x² - 4x - x - 4 = 0;
x² - 5x - 4 = 0;
Выпишем коэффициенты:
старший коэффициент a = 1;
второй коэффициент b = - 5;
свободный член c = - 4.
2. Выполним тождественное преобразование выражения и приведем его к виду квадратного уравнения:
12 - 6(х - 3) - 7х = (х - 2)(х + 3);
12 - 6х + 18 - 7х = х² + 3х - 2х - 6;
- х² - 3х + 2х + 6 + 12 - 6х + 18 - 7х = 0;
- х² - 14х + 36 = 0;
х² + 14х - 36 = 0;
Выпишем коэффициенты:
старший коэффициент a = 1;
второй коэффициент b = 14;
свободный член c = - 36.
Объяснение:
Обозначим недостающее число через x.
а) Среднее арифметическое данного ряда = 24:
(3+8+15+30+x+24)/6 = 24; 80 + x = 24*6;
80 + х = 144
х = 144 - 80
х = 64
Пропущено число 64.
б) Размах ряда - это разность между наибольшим и наименьшим значениями ряда.
Если в ряду содержатся только положительные числа, то пропущено наибольшее число, оно равно :
x-3 = 52;
x= 55.
Если в ряду могут быть отрицательные числа, то пропущено наименьшее число, оно равно 12:
64-x=52;
x = 64-52 = 12.
в) Мода ряда - это число, которое встречается наиболее часто. Так как мода = 8, то пропущено число 8.
Объяснение: