Примем за x -количество метров ткани в первом куске, за y- количество ткани во втором куске, Можем записать уравнение: (x+y)·140=9100 x-y -количество метров ткани в первом куске после продажи, y-x/2 - количество метров ткани во втором куске после продажи, (x-y) больше y- x/2 на 10 метров: Запишем уравнение: (x-y)-(y-x/2)=10: Записали два уравнения и у нас два неизвестных, решим систему уравнений: (x+y)·140=9100 (x-y)-(y-x/2)=10
x+y=65 x-y-y+x/2=10 ·2
x+y=65 2x-4y+x=20
x+y=65 ·3 3x-4y=20
3x+3y=195 3x-4y=20 вычтем из первого уравнения второе 7y=175 y=25, 25 метров ткани во втором куске. x+y=65, y=65-25=40, 40 метров ткани в первом куске.
Из двух последних уравнений следует, что x4=x5. Тогда из первого и третьего уравнений находим x1=x2+1. Из первого уравнения находим x4=x5=x6+1, а из третьего и четвёртого уравнения следует x3=x4+1=x5+1=x6+2. Из четвёртого и пятого уравнения следует x2=x6+3. Наконец, из первого и шестого уравнений следует Отсюда x2=x1-1, x3=x1-2, x4=x5=x1-3, x6=x1-4, x7=x1-5. Складывая все уравнения системы, получаем 2*x1+2*x2+2*x3+2*x4+2*x5+2*x6+2*x7=2*(x1+x2+x3+x4+x5+x6+x7)=2*(x1+x1-1+x1-2+x1-3+x1-3+x1-4+x1-5)=2*(7*x1-18)=9+8+8+9+6+4+4=48, откуда 7*x1-18=48/2=24, 7*x1=42, x1=6 лет - первому сыну. Тогда x2=5, x3=4, x4=x5=3, x6=2, x7=1. ответ: первому сыну - 6 лет, второму - 5, третьему - 4, четвёртому и пятому - по 3 года, шестому - 2 года, седьмому - 1 год.
за y- количество ткани во втором куске,
Можем записать уравнение:
(x+y)·140=9100
x-y -количество метров ткани в первом куске после продажи,
y-x/2 - количество метров ткани во втором куске после продажи,
(x-y) больше y- x/2 на 10 метров:
Запишем уравнение:
(x-y)-(y-x/2)=10:
Записали два уравнения и у нас два неизвестных, решим систему уравнений:
(x+y)·140=9100
(x-y)-(y-x/2)=10
x+y=65
x-y-y+x/2=10 ·2
x+y=65
2x-4y+x=20
x+y=65 ·3
3x-4y=20
3x+3y=195
3x-4y=20 вычтем из первого уравнения второе
7y=175
y=25, 25 метров ткани во втором куске.
x+y=65, y=65-25=40, 40 метров ткани в первом куске.
x1+x4=9
x1+x6=8
x2+x5=8
x2+x3=9
x3+x6=6
x4+x7=4
x5+x7=4
Из двух последних уравнений следует, что x4=x5. Тогда из первого и третьего уравнений находим x1=x2+1. Из первого уравнения находим x4=x5=x6+1, а из третьего и четвёртого уравнения следует x3=x4+1=x5+1=x6+2. Из четвёртого и пятого уравнения следует x2=x6+3. Наконец, из первого и шестого уравнений следует Отсюда x2=x1-1, x3=x1-2, x4=x5=x1-3, x6=x1-4, x7=x1-5. Складывая все уравнения системы, получаем 2*x1+2*x2+2*x3+2*x4+2*x5+2*x6+2*x7=2*(x1+x2+x3+x4+x5+x6+x7)=2*(x1+x1-1+x1-2+x1-3+x1-3+x1-4+x1-5)=2*(7*x1-18)=9+8+8+9+6+4+4=48, откуда 7*x1-18=48/2=24, 7*x1=42, x1=6 лет - первому сыну. Тогда x2=5, x3=4, x4=x5=3, x6=2, x7=1.
ответ: первому сыну - 6 лет, второму - 5, третьему - 4, четвёртому и пятому - по 3 года, шестому - 2 года, седьмому - 1 год.