Вектор — направленный отрезок прямой, то есть отрезок, для которого указано, какая из его граничных точек является началом, а какая — концом[1].
Вектор с началом в точке {\displaystyle A}A и концом в точке {\displaystyle B}B принято обозначать как {\displaystyle {\overrightarrow {AB}}}\overrightarrow {AB}. Векторы также могут обозначаться малыми латинскими буквами со стрелкой (иногда — чёрточкой) над ними, например {\displaystyle {\vec {a}}}{\vec {a}}. Другой рас записи: написание символа вектора прямым жирным шрифтом: {\displaystyle \mathbf {a} }{\mathbf {a}}.
1) Область определения логарифма{ x > 0; x =/= 1{ x^2 + 2x - 3 = (x + 3)(x - 1) > 0Отсюда{ x > 0; x =/= 1{ x < -3 U x > 1В итоге: x > 1 Это значит, что логарифм по основанию х - возрастающий.Кроме того, если x^2 + 2x - 3 > 0. то x^2 + 2x - 2 тоже > 0 2) Теперь решаем само неравенство По одному из свойств логарифмов Причем новое основание с может быть каким угодно, например, 10. Замена Поскольку x > 1, то lg (x) > 0, поэтому при умножении на знаменатель знак неравенства не меняется. Единственное решение уравнения: y = 2, тогда y + 2 = 4, y^2 + 1 = 5.Решение неравенства: y >= 2
x ∈ (-oo; -1-2√2] U [-1+2√2; +oo)Но по области определения x > 1ответ: x ∈ [-1+2√2; +oo) Подробнее - на -
Вектор — направленный отрезок прямой, то есть отрезок, для которого указано, какая из его граничных точек является началом, а какая — концом[1].
Вектор с началом в точке {\displaystyle A}A и концом в точке {\displaystyle B}B принято обозначать как {\displaystyle {\overrightarrow {AB}}}\overrightarrow {AB}. Векторы также могут обозначаться малыми латинскими буквами со стрелкой (иногда — чёрточкой) над ними, например {\displaystyle {\vec {a}}}{\vec {a}}. Другой рас записи: написание символа вектора прямым жирным шрифтом: {\displaystyle \mathbf {a} }{\mathbf {a}}.
Это значит, что логарифм по основанию х - возрастающий.Кроме того, если x^2 + 2x - 3 > 0. то x^2 + 2x - 2 тоже > 0
2) Теперь решаем само неравенство
По одному из свойств логарифмов
Причем новое основание с может быть каким угодно, например, 10.
Замена
Поскольку x > 1, то lg (x) > 0, поэтому при умножении на знаменатель знак неравенства не меняется.
Единственное решение уравнения: y = 2, тогда y + 2 = 4, y^2 + 1 = 5.Решение неравенства: y >= 2
x ∈ (-oo; -1-2√2] U [-1+2√2; +oo)Но по области определения x > 1ответ: x ∈ [-1+2√2; +oo)
Подробнее - на -