Построив график обратной функции и зеркально отразив его относительно прямой y = x, получим нужный нам график.
Итак, обратная к y=log2(x-2)
функция — это
x=2y+2
Строим график y=2x+2
Его можно получить из графика y=2x
смещением вверх на 2 (либо смещением оси y вниз на 2).
Это — быстровозрастающая функция, равная 1 при x = 0, стремящаяся к 0 на минус бесконечности. Располагается только в верхней полуплоскости (область значений y ≥ 0). Несколько точек для построения: x = 1, y = 2; x = 2, y = 4; x = 4, y = 16; x = -1, y = 0.5; x = -2, y = 0.25.
Отражением относительно прямой y = x получаем искомый график. y=2x +2
В знаменателе минусы уничтожаются (минус на минус дает плюс). 3x^2 - x + 3 ≠ 0 D = (-1)^2 - 4*3*3 = 1 - 36 < 0 - корней нет. 3x^2 - x + 3 > 0 при любом x. (x - 2)^2 > 0 при любом x, кроме x = 2, где (x - 2)^2 = 0 Поэтому x = 2 - это решение. Делим на всё это, а также сокращаем (x - 1). Но нужно помнить, что x = 2 - решение, а x = 1 - не решение.
Особые точки: x = -7 и x = 2/3 По методу интервалов берем любое число, например, 0
Неравенство выполнено, значит, интервал (-7; 2/3] подходит. Точка x = 1 в интервал не входит. ответ: x ∈ (-7; 2/3] U [2]
Логарифмическая — функция, обратная потенциированию.
Построив график обратной функции и зеркально отразив его относительно прямой y = x, получим нужный нам график.
Итак, обратная к y=log2(x-2)
функция — это
x=2y+2
Строим график y=2x+2
Его можно получить из графика y=2x
смещением вверх на 2 (либо смещением оси y вниз на 2).
Это — быстровозрастающая функция, равная 1 при x = 0, стремящаяся к 0 на минус бесконечности. Располагается только в верхней полуплоскости (область значений y ≥ 0). Несколько точек для построения: x = 1, y = 2; x = 2, y = 4; x = 4, y = 16; x = -1, y = 0.5; x = -2, y = 0.25.
Отражением относительно прямой y = x получаем искомый график. y=2x +2
и заданной y=log2(x-2)
В знаменателе минусы уничтожаются (минус на минус дает плюс).
3x^2 - x + 3 ≠ 0
D = (-1)^2 - 4*3*3 = 1 - 36 < 0 - корней нет.
3x^2 - x + 3 > 0 при любом x.
(x - 2)^2 > 0 при любом x, кроме x = 2, где (x - 2)^2 = 0
Поэтому x = 2 - это решение.
Делим на всё это, а также сокращаем (x - 1).
Но нужно помнить, что x = 2 - решение, а x = 1 - не решение.
Особые точки: x = -7 и x = 2/3
По методу интервалов берем любое число, например, 0
Неравенство выполнено, значит, интервал (-7; 2/3] подходит.
Точка x = 1 в интервал не входит.
ответ: x ∈ (-7; 2/3] U [2]