По основному св-ву логарифма левая часть равна аргументу логарифмической функции ⇒
3-х=х²-5х-9
х²-4х-12=0
По теореме Виета х₁=-2, х₂=6
Учитывая обл. определения подходит только х=-2
2) По поводу этого примера решила вот что добавить
Выразим косинус, получим
cosx= (2^x+2^(-x)) / 2
в правой части стоит заведомо большее нуля выражение, т.к. любая показательная функция положительна, а сумма положительных ф-ций тоже>0. Поэтому надо решить неравенство cosx>0, -π/2+2πn<x<π/2+2πn,n∈Z
2^ log₂(3-x)=x²-5x-9 ООФ: 3-х>0, х<3
По основному св-ву логарифма левая часть равна аргументу логарифмической функции ⇒
3-х=х²-5х-9
х²-4х-12=0
По теореме Виета х₁=-2, х₂=6
Учитывая обл. определения подходит только х=-2
2) По поводу этого примера решила вот что добавить
Выразим косинус, получим
cosx= (2^x+2^(-x)) / 2
в правой части стоит заведомо большее нуля выражение, т.к. любая показательная функция положительна, а сумма положительных ф-ций тоже>0. Поэтому надо решить неравенство cosx>0, -π/2+2πn<x<π/2+2πn,n∈Z