2у=6-3х
Какое уравнение не задает ту же прямую?
Объяснение:
Дано уравнение прямой:
3х-2у=6
1.
С тождественных преобразо
ваний получим:
3х-2у=6 | ×2
6х-4у=12
Полученное уравнение задает ту же
прямую, так как уравнения равносиль
ны:
3х-2у=6 <==> 6х-4=12
2.
3х-2у=6 <==>
-2у=6-3х | ×(-1) <==>
2у=-6+3х
Полученное уравнение не равносильно
заданному.
Ввод:
Это уравнение задает ДРУГУЮ прямую.
Уравнение 2у=6-3х задает другую прямую.
3.
3х-2у=6 | :3 <==>
3х/3-2у/3=6/3 <==>
х-2/3у=2
Последнее уравнение получено из задан
ного тождественным преобразованием,
поэтому уравнения равносильны. Это
уравнение задает ту же прямую.
4.
3х-2у=6 | :2 <==>
1,5х-у=3
Полученное уравнение равносильно исходному, поэтому это уравнение зада
ет ту же прямую.
О т в е т :
б) 64x^6 - 1/27y^3z^3 = (4x^2)^3 - (1/3yz)^3 = (4x^2 - 1/3yz)(16x^4+4/3x^2yz + 1/9y^2z^2)
в) 7a^3 - 0,007 = 7(a^3 - 0,001) = 7(a^3 - 0,1^3) = 7(a - 0,1)(a^2+0,1a+0,01)
г) (b + 2)^3 - (b - 2)^3 = (b + 2 - b + 2)(b^2+4b+4 + b^2-4+b^2-4b+4)=
= 4(3b^2+ 4)
a) (4a + b)(16a^2 - 8ab - b^2) = 64a^3 + b^3 - неверно.
( 4a + b)( 16a^2 - 4ab + b^2) = 64a^3 + b^3 - верно.
б) (2a + 3b)(4a^2 - 6ab + 9b^2) = 8a^3 - 27b^3 - неверно.
(2a - 3b)(4a^2 + 6ab + 9b^2)= 8a^3 - 27b^3 - верно.
2у=6-3х
Какое уравнение не задает ту же прямую?
Объяснение:
Дано уравнение прямой:
3х-2у=6
1.
С тождественных преобразо
ваний получим:
3х-2у=6 | ×2
6х-4у=12
Полученное уравнение задает ту же
прямую, так как уравнения равносиль
ны:
3х-2у=6 <==> 6х-4=12
2.
3х-2у=6 <==>
-2у=6-3х | ×(-1) <==>
2у=-6+3х
Полученное уравнение не равносильно
заданному.
Ввод:
Это уравнение задает ДРУГУЮ прямую.
Уравнение 2у=6-3х задает другую прямую.
3.
3х-2у=6 | :3 <==>
3х/3-2у/3=6/3 <==>
х-2/3у=2
Последнее уравнение получено из задан
ного тождественным преобразованием,
поэтому уравнения равносильны. Это
уравнение задает ту же прямую.
4.
3х-2у=6 | :2 <==>
1,5х-у=3
Полученное уравнение равносильно исходному, поэтому это уравнение зада
ет ту же прямую.
О т в е т :
2у=6-3х