20 . уже урок идет! ! постройте график функции f(x)=-2x^2-x+7 и, используя график, найдите 1. вершину параболы и ось симметрии 2. наибольшее значение и множество значений функции 3. промежутки возрастания и убывания функции.
1) 90+70 = 160 (м/мин) - скорость сближения пешеходов 2) 16 км = 16 000 м - расстояние между А и В 3) 16 000 - 800 = 15 200 (м) - пройдут пешеходы вместе, пока между ними не останется расстояние 800 м 4) 15200: 160 = 95 (мин)=1 ч 35 мин - время движения пешеходов до момента, когда расстояние между ними останется 800 м 5) 16 000:160 = 100 (мин)=1 ч 40 мин - время до встречи пешеходов 6) 9 ч + 1 ч 35 мин = 10 ч 35 мин - столько времени будет на часах, когда между пешеходами останется 800 м 7) 9 ч + 1 ч 40 мин = 10 ч 40 мин - время встречи пешеходов
Итак, в течение времени с 10:36 до 10:40 расстояние между пешеходами будет менее 800 м.
Представьте многочлен в виде произведения:
Объяснение: (A±B)² =A² ± 2AB+B² ; A²- B² = (A - B)(A+B) .
а) 4a²-4ab + b² — 4 =(2a -b)² - 2² =(2a -b - 2)(2a -b + 2) ;
б) 9-25x²+ 30 ху-9y² =3² - (5x -3y)² = (3 - 5x +3y)(3 + 5x -3y) ;
в) 36x²-25+60xy +25y² =( 6 x+5y)²-(5)² = (6 x+5y -5) (6 x+5y+5) ;
г) 16-24ab-16a²-9b²=(4)²-(4a+3b)²=(4-4a-3b)(4+4a+3b) ;
е) 25a²-20a+4-4b²=(5a -2)²-(2b)² =(5a -2-2b)(5a -2+2b) ;
ж) 16c²-9m²-42m-49=(4c)² - (3m +7)² = (4c -3m -7)(4c +3m +7) ;
з) 70x+25-36y²+49x² = (5 +7x)² -(6y)²=(5 +7x -6y)(5 +7x +6y) ;
!!
д) 9n²- 16m²+40m-25 = (3n)² - (4m - 5)² =(3n - 4m+5)(3n +4m+5)
2) 16 км = 16 000 м - расстояние между А и В
3) 16 000 - 800 = 15 200 (м) - пройдут пешеходы вместе, пока между ними не останется расстояние 800 м
4) 15200: 160 = 95 (мин)=1 ч 35 мин - время движения пешеходов до момента, когда расстояние между ними останется 800 м
5) 16 000:160 = 100 (мин)=1 ч 40 мин - время до встречи пешеходов
6) 9 ч + 1 ч 35 мин = 10 ч 35 мин - столько времени будет на часах, когда между пешеходами останется 800 м
7) 9 ч + 1 ч 40 мин = 10 ч 40 мин - время встречи пешеходов
Итак, в течение времени с 10:36 до 10:40 расстояние между пешеходами будет менее 800 м.