Исследуйте на четность функцию :
1) y = f(x) = - 8x + x² + x³
2) y = f(x) = √(x³ + x²) - 31*| x³ |
ни четные ,ни нечетные
Объяснение:
1)
f(x) = - 8x + x² + x³ ; Область Определения Функции: D(f) = R
функция ни чётная ,ни нечётная
проверяем:
Функция является четной, когда f(x)=f(-x) , нечетной, когда f(-x)=-f(x)
а) f(-x) = - 8*(-x) +(- x)² +(- x)³ = 8x + x² - x³ ≠ f(-x)
Как видим, f(x)≠f(-x), значит функция не является четной.
б)
f(-x) ≠ - f(-x) → функция не является нечетной
- - - - - -
2)
y = f(x) = √(x³ + x²) - 31*| x³ | ,
D(f) : x³ + x² ≥ 0 ⇔ x²(x+1) ≥ 0 ⇒ x ≥ -1 * * * x ∈ [ -1 ; ∞) * * *
ООФ не симметрично относительно начало координат
* * * не определен , если x ∈ ( -∞ ; - 1) * * *
Решение
y = x³ + 3x²
1. Находим интервалы возрастания и убывания.
Первая производная.
f'(x) = 3x² + 6x
или
f'(x) = 3x*(x + 2)
Находим нули функции. Для этого приравниваем производную к нулю
3x*(x + 2) = 0
Откуда:
3x = 0
x₁ = 0
x + 2 = 0
x₂ = - 2
(-∞ ;-2) f'(x) > 0 функция возрастает
(-2; 0) f'(x) < 0 функция убывает
(0; +∞) f'(x) > 0 функция возрастает
В окрестности точки x = - 2 производная функции меняет знак с (+) на (-). Следовательно, точка x = - 2 - точка максимума.
В окрестности точки x = 0 производная функции меняет знак с (-) на (+). Следовательно, точка x = 0 - точка минимума.
Исследуйте на четность функцию :
1) y = f(x) = - 8x + x² + x³
2) y = f(x) = √(x³ + x²) - 31*| x³ |
ни четные ,ни нечетные
Объяснение:
1)
f(x) = - 8x + x² + x³ ; Область Определения Функции: D(f) = R
функция ни чётная ,ни нечётная
проверяем:
Функция является четной, когда f(x)=f(-x) , нечетной, когда f(-x)=-f(x)
а) f(-x) = - 8*(-x) +(- x)² +(- x)³ = 8x + x² - x³ ≠ f(-x)
Как видим, f(x)≠f(-x), значит функция не является четной.
б)
f(-x) ≠ - f(-x) → функция не является нечетной
- - - - - -
2)
y = f(x) = √(x³ + x²) - 31*| x³ | ,
D(f) : x³ + x² ≥ 0 ⇔ x²(x+1) ≥ 0 ⇒ x ≥ -1 * * * x ∈ [ -1 ; ∞) * * *
ООФ не симметрично относительно начало координат
* * * не определен , если x ∈ ( -∞ ; - 1) * * *
функция ни чётная ,ни нечётная
Решение
y = x³ + 3x²
1. Находим интервалы возрастания и убывания.
Первая производная.
f'(x) = 3x² + 6x
или
f'(x) = 3x*(x + 2)
Находим нули функции. Для этого приравниваем производную к нулю
3x*(x + 2) = 0
Откуда:
3x = 0
x₁ = 0
x + 2 = 0
x₂ = - 2
(-∞ ;-2) f'(x) > 0 функция возрастает
(-2; 0) f'(x) < 0 функция убывает
(0; +∞) f'(x) > 0 функция возрастает
В окрестности точки x = - 2 производная функции меняет знак с (+) на (-). Следовательно, точка x = - 2 - точка максимума.
В окрестности точки x = 0 производная функции меняет знак с (-) на (+). Следовательно, точка x = 0 - точка минимума.
Объяснение: