23 учасники І варіант
Choror
1. Подайте у вигляді
многочлена вираз:
2. Розкладіть на множники:
1) 5а? - 20ав; 2) 7х3 - 14; 3)
За – Зв + ах – вх.
3. Розв'яжіть рівняння: 4x?
12x = 0.
4. Спростіть вираз 2а(За –
5) - (a-3)(a -7).
5. Розв'яжіть рівняння: (2х
- 3)(х + 7) = (х – 4) (2x+3) +
3.
6. Знайдіть значення
виразу 18 xy + бх - 24y – 8,
якщо x = 1, y = 0,4.
7. Доведіть, що значення
виразу кратнe 3.
8. Розкладіть на множники
тричлен х? + 8х + 15.
8:37
1) 5x² + 30x + 45 = 5*( x² + 6x + 9 ) = 5*( x + 3 )*( x + 3 )
2) 10x² - 90 = 10*( x² - 9 ) = 5*2*( x - 3 )*( x + 3 )
3) cокращаем числитель и знаменатель дроби на 5*( x + 3 )
4) получаем ( x + 3 ) / ( 2*( x - 3 )) = ( x + 3 ) / ( 2x - 6 )
ОТВЕТ ( x + 3 ) / ( 2x - 6 )
N 2
( x² + 25 )/( x² - 25 ) + ( 5 / ( 5 - x ) = ( x² + 25 - 5( x + 5 )) / ( x² - 25 ) =
= ( x² + 25 - 5x - 25 ) / ( x² - 25 ) = ( x² - 5x ) / ( x² - 25 ) = ( x*( x - 5 )) /
/ ( ( x - 5 )*( x + 5 )) = x / ( x + 5 )
ОТВЕТ x / ( x + 5 )
x=−7x+40x−10
Домножим обе части ур-ния на знаменатели:
-10 + x
получим:
x(x−10)=1x−10(−7x+40)(x−10)
x(x−10)=−7x+40
Перенесём правую часть уравнения в
левую часть уравнения со знаком минус.
Уравнение превратится из
x(x−10)=−7x+40
в
x(x−10)+7x−40=0Раскроем выражение в уравнении
x(x−10)+7x−40=0Получаем квадратное уравнение
x2−3x−40=0
Это уравнение вида
a*x^2 + b*x + c.
Квадратное уравнение можно решить
с дискриминанта.
Корни квадратного уравнения:
x1=D‾‾√−b2a
x2=−D‾‾√−b2a
где D = b^2 - 4*a*c - это дискриминант.
Т.к.
a=1
b=−3
c=−40
, то
D = b^2 - 4 * a * c =
(-3)^2 - 4 * (1) * (-40) = 169
Т.к. D > 0, то уравнение имеет два корня.
x1 = (-b + sqrt(D)) / (2*a)
x2 = (-b - sqrt(D)) / (2*a)
или
x1=8
x2=−5
ответ: x=-5